a2 United States Patent

Greenberg et al.

US009460228B2

10) Patent No.: US 9,460,228 B2

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

GENERATING AND DELIVERING A WRAP
PACKAGE OF CARDS INCLUDING CUSTOM
CONTENT AND/OR SERVICES IN
RESPONSE TO A TRIGGERED EVENT

Applicant: Wrap Media, LL.C, San Francisco, CA
(US)

Inventors: Eric H. Greenberg, Ross, CA (US);

John M. Garris, San Francisco, CA

(US); Kunal K. Bhasin, San Francisco,

CA (US); Peter M. Foster, Lafayette,

CA (US)

Assignee: Wrap Media, LL.C, San Francisco, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/997,087

Filed: Jan. 15, 2016

Prior Publication Data

US 2016/0132516 Al May 12, 2016

Related U.S. Application Data

Continuation-in-part of application No. 14/678,316,
filed on Apr. 3, 2015, now Pat. No. 9,285,977, which
is a continuation of application No. 14/669,395, filed
on Mar. 26, 2015.

45) Date of Patent: *Oct. 4, 2016
(52) US.CL
CPC ......... GOG6F 17/3089 (2013.01); GOGF 3/0483

(2013.01); GOGF 3/0485 (2013.01); GO6F
3/04817 (2013.01); GOGF 3/04842 (2013.01);
GOGF 17/212 (2013.01); GOGF 17/2235
(2013.01); GOGF 17/248 (2013.01);

(Continued)

Field of Classification Search

CPC GO6Q 30/02; GOGF 3/0482
USPC 715/243, 200, 234-235, 204
See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

6,141,611 A
6,321,244 Bl

10/2000 Mackey et al.
11/2001 Liu et al.

(Continued)
OTHER PUBLICATIONS

Greenberg et al., U.S. Appl. No. 14/996,582, filed Jan. 15, 2016.
(Continued)

Primary Examiner — Manglesh M Patel
(74) Attorney, Agent, or Firm — Beyer Law Group LLP

(57) ABSTRACT

Delivery of a wrap package in reply to a notice of the
occurrence of a trigger event sensed by a “Thing” among the
Internet of Things. In response, a wrap package, including
custom content presented within cards of the wrap is auto-
matically generated. The custom content selectively encom-
passes, one or more media types, application functionality
and/or e-commerce related services. A wrap descriptor,

(Continued) which defines the wrap package including the custom con-
tent, is then delivered to a computing device associated with
Int. CL a target recipient. When consumed, the computing device
GO6F 17/00 (2006.01) generates a runtime instance of the wrap package from the
GO6F 17/30 (2006.01) wrap descriptor.
(Continued) 30 Claims, 69 Drawing Sheets
A 38000
APPLIANCE
SERVICE & REPAIR
3800A 3800B 3800C
General Electric TIMETO
REPLACE YOUR WaTER ACME
WATER FILTER REPLACEMENT APPLIANCE
SEMODEL INSTRUCTIONS
§8 2010
Il
BAY
APPLIANCE
3800




US 9,460,228 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 62/062,056, filed on Oct.
9, 2014, provisional application No. 62/062,061, filed
on Oct. 9, 2014, provisional application No. 62/084,
171, filed on Nov. 25, 2014, provisional application
No. 62/091,866, filed on Dec. 15, 2014, provisional
application No. 62/114,675, filed on Feb. 11, 2015,
provisional application No. 62/133,574, filed on Mar.
16, 2015, provisional application No. 62/195,642,
filed on Jul. 22, 2015, provisional application No.
62/210,585, filed on Aug. 27, 2015, provisional appli-
cation No. 62/145,360, filed on Apr. 9, 2015, provi-
sional application No. 62/170,438, filed on Jun. 3,
2015, provisional application No. 62/170,569, filed
on Jun. 3, 2015, provisional application No. 62/193,
830, filed on Jul. 17, 2015.

(51) Int. CL
HO4L 29/08 (2006.01)
GOGF 17/21 (2006.01)
GOGF 17/24 (2006.01)
GOGF 3/0485 (2013.01)
G06Q 30/06 (2012.01)
GO6T 11/60 (2006.01)
GOGF 3/0481 (2013.01)
GOGF 3/0484 (2013.01)
GOGF 17/22 (2006.01)
GOGF 3/0483 (2013.01)

(52) US.CL
CPC ... GOG6F17/30893 (2013.01); GOGF 17/30905

(2013.01); GO6Q 30/0643 (2013.01); GO6T
11/60 (2013.01); HO4L 67/02 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,459,988 B1* 10/2002 Fan .............. B60R 21/0132
340/988
6,732,031 B1* 5/2004 Lightner ............. GO1M 15/102
701/314

6,832,141 B2  12/2004 Skeen et al.
7,348,895 B2* 3/2008 Lagassey .......... GO7C 5/008
340/907
8,068,951 B2 112011 Chen et al.
8,606,512 B1* 12/2013 Bogovich .......... GO06Q 40/08
340/995.28
8,892,341 B2* 11/2014 McClellan ........... GO7C 5/0816
701/115
8,892,451 B2* 11/2014 Everett ........... GO06Q 40/08
340/439
9,191,289 B2* 11/2015 Zhang ................. HO4L 12/2803
2010/0070876 Al 3/2010 Jain et al.
2010/0136944 Al* 6/2010 Taylor ..o B60R 25/00
455/404.1
2012/0054596 Al 3/2012 Kroger et al.
2012/0123632 Al 5/2012 Nejah
2012/0131427 Al 5/2012  Artin
2012/0278704 Al  11/2012 Ying et al.
2013/0021377 Al 1/2013 Doll
2013/0024757 Al 1/2013 Doll et al.
2013/0046510 Al* 2/2013 Bowne .......... G06Q 10/0833
702/187
2013/0097186 Al 4/2013 Van Hoff
2013/0111395 Al 5/2013 Ying et al.
2013/0219255 Al 8/2013 Van Hoff et al.
2013/0222264 Al* 8/2013 Shirzadi ................ GOGF 3/0483
345/173
2014/0047322 Al*  2/2014 Kim ..o GO6F 17/2247
715/234

2014/0074624 Al 3/2014 Ying et al.

2014/0074863 Al
2014/0074934 Al
2014/0075275 Al
2014/0075289 Al
2014/0075339 Al

3/2014 Walkingshaw et al.
3/2014 Van Hoff et al.
3/2014 Aleksandrovsky et al.
3/2014 Brant

3/2014 Weskamp et al.

2014/0081675 Al*  3/2014 Ives .......cccovenn GO06Q 40/08
705/4

2014/0089789 Al* 3/2014 Schowtka ... GOG6F 17/248
715/243

2014/0198127 Al
2014/0210843 Al*

7/2014 Ying

7/2014 VanCuren, Jr. ... GO6T 11/001
345/589

2014/0245128 A9

2014/0279707 Al*

82014 Brant

9/2014 Joshua .............. G06Q 30/0283
705/400

2014/0320535 Al

2014/0351268 Al

2015/0100587 Al

2015/0127570 Al*

10/2014 Ying
11/2014 Weskamp et al.
4/2015 Walkingshaw et al.
5/2015 Doughty ............... G06Q 10/00
705/325

OTHER PUBLICATIONS

Greenberg et al., U.S. Appl. No. 14/997,076, filed Jan. 15, 2016.
Jason Shueh, “Salesforce Launches Internet of Things Cloud”,
http://www.govtech.com/products/Salesforce-Launches-Internet-
of-Things-City-Cloud.html, Sep. 15, 2015.

Claes Bell, “Connected Computing Drives Off”, http://www.
bankrate.com/finance/auto/connected-car-cloud-computing-drives-
off-1.aspx, Jun. 29, 2012.

Don DeLoach, “Internet of Things Part 6: What Will Smart Vehicles
Look Like?”, https:/infobright.com/blog/internet-things-part-5-
will-smart-vehicles-look-like/#. VkTIAa6rTOc, Oct. 14, 2013.
Gary Audin, “Mobile Internet of Things: An Explosion Soon”,
http://www.nojitter.com/post/240155503/mobile-internet-of-things-
an-explosion-soon, May 23, 2013.

Jacob Morgan, “A Simple Explanation of ‘The Internet of Things’”,
http://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-ex-
planation-internet-things-that-anyone-can-understand/
#f47d6fa68284, May 13, 2014.

Sarah Sluis, “Harper’s Bazaar Pursues Shoppable Ads With
Streamwize”,  http://adexchanger.com/publishers/harpers-bazaar-
pursues-shoppable-ads-with-streamwize/, Jul. 24, 2014, down-
loaded on May 22, 2015.

Paul Adams, “The End of Apps as We Know Them”, https://blog.
intercom.io/the-end-of-apps-as-we-know-them/, published around
Nov. 2014, downloaded on May 22, 2015.

Paul Adams, “Why Cards are the Future of the Web”, https://blog.
intercom.io/why-cards-are-the-future-of-the-web/, published
around Sep. 2013, downloaded on May 22, 2015.

Allison Schiff, “Sharethrough Brings Its Version of Twitter Cards to
the Masses”, http://adexchanger.com/native-advertising-2/
sharethrough-brings-its-version-of-twitter-cards-to-the-masses/,
Dec. 17, 2014, downloaded on May 26, 2015.

Sarah Perez, “Storytelling App Steller Becomes More of a Social
Network”, http://techcrunch.com/2014/08/2 1/storytelling-app-
steller-becomes-more-of-a-social-network/, Aug. 21, 2014, down-
loaded on May 26, 2015.

Kaylene Hong, “Steller is a Beautiful Visual Storytelling App,
Similar to Storehouse, but for Your iPhone Instead”, http:/
thenextweb.com/apps/2014/03/13/steller-is-a-beautiful-visual -sto-
rytelling-app-similar-to-storehouse-but-for-your-iphone-instead/,
Mar. 13, 2014, downloaded on May 27, 2015.

Jayanth Prathipati, “Why Do All Mobile Roads Lead Back to the
Palm Pre?”, http://thetechblock.com/mobile-roads-lead-back-palm-
pre/, published on Jun. 11, 2014, downloaded on May 27, 2015.
Pictela, “Introduction to Pictela”, http://www.pictela.com/docs/get-
ting-started/introduction-to-pictela, from Wayback Machine indi-
cating Wayback retrieval date of Mar. 18, 2015, downloaded on Jun.
S, 2015. (Pictela_ Intro).

Pictela, https://web.archive.org/web/20130908132533/http://www.
pictela.com/formats, from Wayback Machine indicating Wayback
retrieval date of Sep. 8, 2013, downloaded on Jun. 5, 2015.
(Pictela_ Formats).



US 9,460,228 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Twitter, https://web.archive.org/web/20150324121730/https://dev.
twitter.com/cards/getting-started, from Wayback Machine indicat-
ing Wayback retrieval date of Mar. 24, 2015, downloaded on Jun.
S, 2015. (Twitter_ Getting Started).

Twitter, https://web.archive.org/web/20140929154946/https://dev.
twitter.com/cards/overview, from Wayback Machine indicating
Wayback retrieval date of Sep. 29, 2014, downloaded on Jun. 5,
2015. (Twitter_ Overview).

Max Bulger, “Why Cards?”, http://blog.trywildcard.com/post/
93983166893 /why-cards, published on Aug. 6, 2014, downloaded
on May 26, 2015.

Streamwize, http://www.streamwize.com, downloaded on May 22,
2015. (Streamwise).

Streamwize, https://web.archive.org/web/20141222085204/http://
www.streamwize.com/#introduction, from Wayback Machine indi-
cating Wayback retrieval date of Dec. 22, 2014, downloaded on Jun.
S, 2015. (Streamwize V2).

Steller, “Everyone has a story to tell. Tell yours with photos, videos
and texts”, https://steller.co, from Wayback Machine indicating
Wayback retrieval date of Apr. 5, 2014, downloaded on Jun. 5, 2015.
Max Bulger, “Introducing the Wildcard iOS SDK”, http://blog.
trywildcard.com/, Feb. 23, 2015, downloaded on May 26, 2015.
Wildcard, http://www.trywildcard.com/, from Wayback Machine
indicating Wayback retrieval date of Feb. 8, 2014, downloaded on
Jun. 5, 2015. (WC_homepage).

Wildcard, https://web.archive.org/web/20141115090135/http://
www.trywildcard.com/docs/intro, from Wayback Machine indicat-
ing Wayback retrieval date of Nov. 15, 2014, downloaded on Jun.
5, 2015. (intro V1).

Wildcard, https://web.archive.org/web/20150321155952/http://
www.trywildcard.com/docs/intro, from Wayback Machine indicat-
ing Wayback retrieval date of Mar. 21, 2015, downloaded on Jun.
5, 2015. (intro V2).

Wildcard, https://web.archive.org/web/20141115171158/http://
www.trywildcard.com/docs/overview, from Wayback Machine
indicating Wayback retrieval date of Nov. 15, 2014, downloaded on
Jun. 5, 2015. (arch Overview V1).

Wildcard, https://web.archive.org/web/20150321162417/http://
www.trywildcard.com/docs/overview, from Wayback Machine
indicating Wayback retrieval date of Mar. 21, 2015, downloaded on
Jun. 5, 2015. (arch overview V2).

Wildcard, https://web.archive.org/web/20150520042344/http://
www.trywildcard.com/docs/overview/, from Wayback Machine
indicating Wayback retrieval date of May 20, 2015, downloaded on
Jun. 5, 2015. (arch overview V3).

Wildcard, https://web.archive.org/web/20141115090625/http://
www.trywildcard.com/docs/sdk/quickstart__sdk, from Wayback
Machine indicating Wayback retrieval date of Nov. 15, 2014,
downloaded on Jun. 5, 2015. (SDK_QS_V1).

Wildcard, https://web.archive.org/web/20150321172000/http://
www.trywildcard.com/docs/sdk/quickstart__sdk, from Wayback
Machine indicating Wayback retrieval date of Mar. 21, 2015,
downloaded on Jun. 5, 2015. (SDK_QS_V2).

Wildcard, https://web.archive.org/web/20141115090143/http://
www.trywildcard.com/docs/sdk/java_ sdk, from Wayback Machine
indicating Wayback retrieval date of Nov. 15, 2014, downloaded on
Jun. 5, 2015. (WC_Java_V1).

Wildcard, https://web.archive.org/web/201503211847 16/http://
www.trywildcard.com/docs/sdk/java_ sdk, from Wayback Machine
indicating Wayback retrieval date of Mar. 21, 2015, downloaded on
Jun. 5, 2015. (WC_Java_V2).

Wildcard, https://web.archive.org/web/20141115090150/http://
www.trywildcard.com/docs/sdk/ruby__sdk, from Wayback Machine
indicating Wayback retrieval date of Nov. 15, 2014, downloaded on
Jun. 5, 2015. (WC_Ruby_V2).

Wildcard, https://web.archive.org/web/20150321180400/http://
www.trywildcard.com/docs/sdk/ruby__sdk, from Wayback Machine
indicating Wayback retrieval date of Mar. 21, 2015, downloaded on
Jun. 5, 2015. (WC_Ruby).

Wildcard, https://web.archive.org/web/20141115090647/http://
www.trywildcard.com/partners, from Wayback Machine indicating
Wayback retrieval date of Nov. 15, 2014, downloaded on Jun. 5,
2015. (WC_Partners_V1).

Wildcard, https://web.archive.org/web/20150315070647/http://
www.trywildcard.com/partners, from Wayback Machine indicating
Wayback retrieval date of Mar. 15, 2015, downloaded on Jun. 5,
2015. (WC_Partners_ V2).

Wildcard, https://web.archive.org/web/20141126020058/http://
www.trywildcard.com/docs/faq/, from Wayback Machine indicat-
ing Wayback retrieval date of Nov. 26, 2014, downloaded on Jun.
5, 2015. (FAQ_V1).

Wildcard, https://web.archive.org/web/20150512091432/http://
www.trywildcard.com/docs/ios-sdk/tutorials,  from  Wayback
Machine indicating Wayback retrieval date of May 12, 2015,
downloaded on Jun. 5, 2015. (WC_IOS_ Tutorials_ V1).
Wildcard, https://web.archive.org/web/20150512091432/http://
www.trywildcard.com/docs/ios-sdk/tutorials,  from  Wayback
Machine indicating Wayback retrieval date of May 12, 2015,
downloaded on Jun. 5, 2015. (WC_IOS_ Sample_ Projects_ V1).
Wildcard, https://web.archive.org/web/20141115171308/http://
www.trywildcard.com/docs/schema, from Wayback Machine indi-
cating Wayback retrieval date of Nov. 15, 2014, downloaded on Jun.
S, 2015. (WC__Card_ Schema_ V1).

Wildcard, https://web.archive.org/web/20150518060819/http://
www.trywildcard.com/docs/schema, from Wayback Machine indi-
cating Wayback retrieval date of May 18, 2015, downloaded on Jun.
S, 2015. (WC_Card__Schema_ V2).

Wildcard, http://www.trywildcard.com/docs/faq#shopify, not avail-
able on Wayback Machine, downloaded on Jun. 5, 2015. (WC_
FAQ_V2).

Jacqueline Thomas, A Serious Look At Card Based Design,
[retrieved on Nov. 17, 2015].Retrieved from the internet: http://
webdesignledger.com/card-based-design.Jun. 12, 2014.

Jahangir Mohammed,“How Connected Cars Have Established a
New Ecosystem Powered by IoT”, http://techcrunch.com/2015/01/
3 1/how-connected-cars-have-established-a-new-ecosystem-pow-
ered-by-iot/, Jan. 31, 2015.

Vito Tardia, “Building ePub with PHP and Markdown”, https://
www.sitepoint.com/building-epub-with-php-and-markdown/, Mar.
1, 2013.

* cited by examiner



US 9,460,228 B2

NP1

/

_.-Z.v_‘

e

orl

/

4rl

I E

vl

AVl

ari orlL  darl

Sheet 1 of 69

Sd9
JUOIIRO0

indu

@

an0ddy

9INPaYdS

Ang

N

vyl

@ || &

$9.1n}old
lo/pue
sobew|

09pIA

A19|e9

Oct. 4, 2016

U.S. Patent

~

T

o —mQ

Ixal

¢l

L

vl




US 9,460,228 B2

Sheet 2 of 69

Oct. 4, 2016

¢ Old

SWALSAS d3HLO NOYHS
NV OL V1vQ LNdLNO ANV
1NdNI 1VHL SHO104NNOD

SHIYIHLYO V1vad 034NLONYLSNN

SHOLVHOIINI V1VA A34NLONYLS

NOILVHOTLNI

S3TNAOW 3718vSN ATISY3 NI
ALITYNOILONNS 9330 3S0dX3
LVHL S193rd0 ONIHOHLNY

S3TNAOC I ATGISNALXT ANV TN443IMOd

AdVHEIT ININOdINOD ASHIAIA V

NOILONNA

IN3INOO VIA3 N ¥43H10
ANV 3AILYN 3AN7T1ONI
1VHL S@ydvd 1Nd1LNv3d
40 NOILY3HO 3FHL ST19VYN3
1VHL TO0L ONIHOHLNY

S3LVYIdNEL INDISAA T1IM “TINdILNY3E

ONIYOHLNY d3SVE 3LV 1dIN3L

ALITVNO
NOIS3d

U.S. Patent

~ ayvo

14



US 9,460,228 B2

Sheet 3 of 69

Oct. 4, 2016

U.S. Patent

SHHOMULAN dv

S3LISaAM

WYHOVLSNI

4004304

dALLIML

SIS

1viNg

€ "Old

NOILVZIT¥YNOSYH3d

123rg0 viva INFOITTALNI
37aV140d @3Svg-anom

SWALSAS 43HLO
HLIM NOILYHEO3LNI
1
] SOILATYNY
0L FOVXOVd INJINQOD 3AIT
dVEm
SdVdM

NI3IM 139 ONIXIIN

(LNdLNO ¥O/ANY LNdNI) YL1vd

$$

SA0INYAS
J0H3INNOD

HOXYIN

ALITYNOILONNA
NOILYOITddY

| St

(4] 03dIA

= 4 SOLOHd

ST4N Se a|qe.teys ‘sebeyoed |e1ibip aie sdeip

d3S0d OO
43sn



US 9,460,228 B2

Sheet 4 of 69

Oct. 4, 2016

U.S. Patent

L9]

(S)

dOHLNY

¥ "Old

[44

JHOVO JOVHOLS

S > >

AHOMINYHS
NOILYOITddY 93M

8¢ /
ANIONT dYdM

JAON H3AY3S

0¢



U.S. Patent

Oct. 4, 2016 Sheet 5 of 69
WRAP PACKAGE DESCRIPTOR
42 T WRAP ID
44 _ -1 WRAP NAMETITLE
43 T COVERID
45 — T OTHER INFORMATION / METADATA

COVER
15

(URL)

A 4

CARDS
14

COMPONENT(S) 16

CONTENT eee

17

50\

WRAP VIEWER

A

TOOLS

NAVIGATION TOOLS

SHARING TOOLS

STORING TOOLS

E-COMMERCE TOOLS

PRESENTATION ENGINETOOLS

SECURITY & ACCESS CONTROL

RENDERING ENGINE

APPLICATION FUNCTION(S)

CARD
BEHAVIOR
DEFINITIONS

(e (alalalalalyloly

W N =

S O

oo~

o

FIG. 5A

US 9,460,228 B2

REFERENCED

ASSETS
85



U.S. Patent

Oct. 4, 2016 Sheet 6 of 69 US 9,460,228 B2

WRAP PACKAGE DESCRIPTOR
42 T WRAPID
44 -1~ WRAP NAMETITLE

43 T COVERID
45 — T OTHER INFORMATION / METADATA

46 —T CARD DESCRIPTOR REFERENCED
¢ SCRIPTO ASSETS
1, 65
CARDS
COVER 14
15 » | COMPONENT(S) 16
STATE
(URL) CONTENT eee «—»| DESCRIPTOR
17 68
I 1
A
0~
WRAP VIEWER ‘
TOOLS o
NAVIGATION TOOLS ~,
SHARING TOOLS .y
STORING TOOLS |5
54 BEHAVIOR
E-COMMERCE TOOLS -~ || ExtENSIONS
PRESENTATION ENGINETOOLS F\/SZ 62
5
SECURITY & ACCESS CONTROL |~
RENDERING ENGINE |
APPLICATION FUNCTION(S) | 58
CARD 60
BEHAVIOR —
DEFINITIONS

FIG. 5B



U.S. Patent Oct. 4, 2016 Sheet 7 of 69 US 9,460,228 B2

P

44
42 L~ WRAP ID WRAP NAME /TITLE~—
OTHER INFORMATION / METADATA —~

WRAP PACKAGE DESCRIPTOR

46 L~ CARD DESCRIPTOR

71— —T—CARD ID:

73 —1—TCARD TYPE:
75 < —T—LAYOUT

75

76 1A+ LavouT D s

77 14— LAYOUT NAME

78 J__—]~ LAYOUT DEFINITION (CSS)
[ ]

PINS 80 oo

814 T T PINID !
82 1__1—1 PIN NAME
16 4T~ COMPONENT
86 4 _t+—TTATTRIBUTES
17 \\//__\‘ CONTENT 000
874 +T11 source |[***
031 __ b1 STYLE
95 |1 _|[ BEHAVIOR

T DECLARATION

FIG. 6



U.S. Patent

CARD DESCRIPTOR

Oct. 4, 2016

Sheet 8 of 69

;MA
14

W

US 9,460,228 B2

76 — A
77\_/
78 — A

80 —

81 —
82

88 ——
89 —

17\_/

91—

93 —
95 —

91C —
93C —
95C —

— CARD ID:
— CARD TYPE:

LAYOUT:

f

— [~ LAYOUT ID

[~ LAYOUT NAME

|~ LAYOUT DEFINITION (CSS)
[ 4

f-75

— PINS

| — ]

1)

[

V)

~PINID
~ PIN NAME

COMPONENT

1D
- TYPE
~"CONTENT"

ATTRIBUTES

1 CLASSES

T CSS
—~ BEHAVIORS

ATTRIBUTES

86C

T~ CLASSES

T CSS
1 BEHAVIORS

FIG. 6A



U.S. Patent Oct. 4, 2016 Sheet 9 of 69 US 9,460,228 B2

;468
CARD DESCRIPTOR

71 — _———CARD ID: |

73 | —~CARDTYPE: ]
LAYOUT:
76 — T T~ LAYOUTID [75
77 — 1 |~ LAYOUT NAME
78 T T~ LAYOUT DEFINITION (CSS)
°
[ ]
COMPONENTS / 16
88 —_—T T~ COMPONENT ID f
84 1 T~ COMPONENT NAME
89 — T T~ COMPONENT TYPE oo
17 —_—~TT~ "CONTENT" 86
ATTRIBUTES j
91 — 1 | T~ CLASSES
93 1 [ T°CSS YY) 'Y
95 4T~ BEHAVIORS
I |
ATTRIBUTES
91C— 1" T CLASSES 86C

93C——1 T CSS
95C — 1~ T BEHAVIORS

FIG. 6B



U.S. Patent Oct. 4, 2016 Sheet 10 of 69 US 9,460,228 B2

466G
GALLERY CARD DESCRIPTOR S

716 1—""CARD ID:
796 L———CARD NAME:
CARD TYPE:

LAYOUT /756G
766 —F—LAYOUT ID
776 _—LAYOUT NAME
78 —— LAYOUT DEFINITION (CSS)

16G——COMPONENT

88G—1 ID:
84G—1~ NAME: Gallery
89G—1 TYPE: Gallery

COMPONENTS ——17G

COMPONENT —116
88 ——I1D:
84 ——NAME: Gallery Item
89— TYPE: Gallery Item

COMPONENTS—16
COMPONENT ——16H

88H 4-—1D:

84H 4+—NAME: headline
89H 1+—TYPE: textline
17H+""TEXT: "Broad Billed" soe
AT.TRI BUTES ~_ _ 86

A.TTRIBUTES’\/ 86

A.TTRI BUTES ~__ 85

ATTRIBUTES ~___ 86

ATTRIBUTES

91Gl___—TT CLASSES 86G
936171 CSS
95611 BEHAVIORS

ATTRIBUTES
910l T CLASSES 86C
93¢ T CSS
95¢ | 1 BEHAVIORS

FIG. 6C



U.S. Patent

16T

US 9,460,228 B2

88T —
84T ——
89T —

88TT -
84TT

89TT -
77T 4

91T
93TT S
95TT

88TI —
84Tl

89TI
87TI

91TT —
93TI
95TI

88L —
84L
89L
171 —

9L
93L
95L

Oct. 4, 2016 Sheet 11 of 69
COMPONENT 5
— |D:
— NAME: Transact
—— TYPE: Trigger 1
COMPONENTS — 17T
COMPONENTS —— 16TT
| +—+1D:
L1 T-NAME: Price
L1 T TYPE: Textbox
—T " TEXT: Pomegranate....
ATTRIBUTES . 86TT
|1 TtClasses
L1 [1CSS
1 [ T1Behaviors
COMPONENTS _—16TI
| +—1~ID:
1 —T1T-NAME: Buy Button
| 1~ TYPE: Image
| 1 TURL
ATTRIBUTES — 86Tl
|1 T1{Classes
L1 T1CSS
L1 [1Behaviors
COMPONENT —— 16L
| +—+ID
| +—1~NAME: Culdesac
| 1—+TYPE: Link
L1 1 URL: http:lwww/....
ATTRIBUTES _—86L
|1 11Classes
| +—1CSS
|1 T1Behaviors: [:open-in-new-tab"]
ATT:RIBUTES ~_386
[ )

|
ATTRIBUTES ~_ gg7
®

FIG. 6D



U.S. Patent Oct. 4, 2016 Sheet 12 of 69 US 9,460,228 B2

/-187

FEED DESCRIPTOR

103 _—~FEED ID:

104 —_~T~FEED NAME:
105 ~~TYPE:

107 T~ SOURCE:

109 _—~LIFECYCLE:
111 T~ TARGET
113~ T~FREQUENCY:
115 T~PARAMETERS:

FIG. 6E N
/

WIDGET COMPONENT DESCRIPTOR

88W—_~T COMPONENT ID :
89W.__——1 COMPONENT TYPE : WIDGET

84W._—+ COMPONENT NAME:
( 121 _4+—~WIDGETID :

1221 WIDGET NAME :
124.__{— SCHEMA
126 —— SOURCE:
120< 127 | ———WIDTH :

128 _|——HEIGHT :
129 ——POSITION :
130 ———PARAMETERS :

\  86W— | —— ATTRIBUTES :

FIG. 6F




US 9,460,228 B2

Sheet 13 of 69

Oct. 4, 2016

U.S. Patent

A3

d. 'oOld

a © )

1
‘PolElS @IUIY Moy s jey]
$I91B M INOA Ul $991|S JInJy A1) JoAg

V. 'Old oce

a

@ 7

Le NOILO3 7700 IHL ISMOYE

> 3dIMS ) \
an 17

0gs [einieu | « owb-uou « sa1j-usin|b
uebsh « sanneAlassid olez
S8110[RO 0.8Z + SIOUBI9BMS JBIP 0J6Z

.4VONS LON 'Y3LVM ANIYC

JUI

0l€

\

>
O




U.S. Patent Oct. 4, 2016 Sheet 14 of 69 US 9,460,228 B2

<
o
[ ‘\\
\
EC!-'
=2=0
w —_
SE®® Q
S v = M~
o+~ 3D ~
© s 2 8% :
oo = O
~ c > H
2 £ 5 LL
cE= |
o
PN

A

essences,
not sweeteners.
FIG. 7C

Great flavor
from frui




US 9,460,228 B2

Sheet 15 of 69

Oct. 4, 2016

U.S. Patent

no-gl 2440k 1§ |
mE:EmwsoaL\

381309 89U

 a—
O

A

™ 6e¢

[T

__
1938/ JUIH ;

vee

GlIE

3. "'Old

4 ©) N

"J00p JUOJ} INOA
0} Jybreuss patoaljpg




U.S. Patent Oct. 4, 2016 Sheet 16 of 69 US 9,460,228 B2

A
340
N {o Buy Now }’V
/

©
FIG. 7H

O
[
Hint Water

-blood orange

$18 for 12 16-ounce bo

~T~
323 \//
\

A N B B
/ (0.0 [\ C;) \\
1l )Q >
5 AUIY 2 | (|2
o[] = ; @ O
) Sy 2 —
o5
G '\) )



US 9,460,228 B2

Sheet 17 of 69

Oct. 4, 2016

U.S. Patent

—
0ve

\/
(@)1

gee

rL-"old

\\@//

\*H g se[oqaouno-gl gl 1o} g1 ¢
N8 zz1y yinijadelb

]
1123

\/
(e)z1€

8te

1. 'Old

a © N

sajoq 8auno-g}, 7} 10} 8¢
{[mon 0 & = 0 hoean




US 9,460,228 B2

Sheet 18 of 69

Oct. 4, 2016

U.S. Patent

\/l\
09¢

8LE

1. "Old

4 © N

"OW/s8)0g B80UN0-9), 7|

2qUISINS ©) 91§ 445

~ %G| 9neg

pue Mou 8qLISqNS

01 qullp Ajiddey uen noA sajusiuly e $,818Y)
MOU - S9DUSSSE PUE §|10 }INJJ [BINJEU
nq Buiyou yiim Jejem swoss|oym sind s|
Iy exe} 0 o Aoijod e sjowoid sm “sowb g
puUE ‘s3140[eD ) ‘seAlleAlssald g ‘BI1A)s
‘sisusjeams Joip () ‘ebns  eney zziy July pue
Jalem July "snoIdI[ap 8JoW SN[ IB)eM S| JoJe M July

)

(9)21€

—
8¢ee

sajjoq 8ouno-9} 7} 10§ 8¢

zz1j Aagyoe|q

——
=
(o]
=
>
=
m
U

l
\

l(OO. l




U.S. Patent

Oct. 4, 2016 Sheet 19 of 69

US 9,460,228 B2

=

DRINK WATER. NOT SUGAR’

N - il 4.

i EEE wEitieels

= (= RSl =i
i [— 1= i

zero diet sweeteners ¢ zero calories
zero preservatives * vegan

319
gluten-free » non-gmo « all natural A —"
Drink Water, Not Sugar
by Hint Water

B E Y

~ 383
. v

381 — Share Like Tweet

382

FIG. 7TM




US 9,460,228 B2

Sheet 20 of 69

Oct. 4, 2016

U.S. Patent

g8 'Old

TN
¥4
fuiddousg msc_“coo/.\/_‘ Lb
~ T 1N0Y99YD 01 Pasd0ld
60¥ € )
A€ }1ED 0} PpY )
L0V
s8[jog zog) ‘z) - 8SRY
1 ™
G0y
D uEmNﬂ
mo.v eibowod Aterlf jo ys ﬁ oinde
sefijoqeouno-gj gL 10} Q vw
djeuesbowod
—{CE
Ely

(-

XA

91¢

830 20uno-9} 71 10} G| %
| |MoN fng % ajeuelbawod

~ AdIMS

-HVONS LON YILVA INIIG

AUIY

g

J3JBM JUIH

u o

ove




US 9,460,228 B2

Sheet 21 of 69

Oct. 4, 2016

U.S. Patent

(44"

8Ly

o

ELy

as ‘old

4 © N

(L 320N )

/lﬁ 1N0Y28YD 0] 8NUNUOY u

8pog owold

79618 M@ [ ]
I3 [puddius

2918 |

00°'81S |iesor-ang UTddoyg enunuog 4

sefogeoune-g. 21 19} Q| & mm

00'81$ ajeuesBowod

18401

,(o

Ly

7 N
c€
Buiddoys m:c:coo/\r/_‘ Ly
mo\. /.m 1NOY98YD) 0} Pe890Id u
14
AL 10 0 ppy )
L0Y <>
§OIN04 2091 ‘21 -850 & S
1*1)7 Hnm
syuetd QWO -uou [ Mmq
By - A
1 .
mov ogeitesBawod AfoAl JO Ysep & YLix. UoleM oind®
S8[j}0g 8auno-g| ¢| 104 w r%
d)eueihawod
R
ey

08 'Old

-




US 9,460,228 B2

Sheet 22 of 69

Oct. 4, 2016

U.S. Patent

48 "Old

\@/

™

1 Dan |

BSN 5ININ] J0] UOTEWIo]UT 5AES

ssalppe [ews

apoa diz dlels

- (T77) segquinp suoyd
| | |

5S81ppY

SS81ppY

SUEN

Buipq se sweso
uopewloju| buiddiys

(T

—
@)

48 "Old

4 ©) N

/

LN ]

- (T77) Jlequiny suUOYd
_ |

- apoo diy 21e1s

$S0.pPY

$S9.pPY

piea uo steadde 11 se swep

ADQ Ajwu -dxg

JaquinN pJen

5s6.4dX3 UBDIIB WY ©
PA0OSIJo pled Bi1sejNo  BSIAo

uonewo| Bul||ig

/(_"_ o

| C—




US 9,460,228 B2

Sheet 23 of 69

Oct. 4, 2016

U.S. Patent

9¢¢

H8 "Old

N
J

— 'suolnsanb Aue aney nok

UIdoyg snunuoy

jiidoplo InoA Aolug

11 Sh Joe}U0D Bsed|d “paplaold
aAgY Nok ssalppe
|leWs 2y} 0} JUss Usaq sey |euwd Uy

“TGB00BZOSTHS S! Jequinu Buiyoel} Inop

jiii4epto anok Joj noA yueyy

| G

/(."_ o

Gee

1%

o8 "Old

\\

J

\

/(
/(m JopJ0 98 dwon u
2P0y owoaold
2961 oL [ 1]
J344 |puiddus
91$ fre
00'81$ [eror-ang UTddoyg SNURuoY __
il SENI0geoU0-c| ) e} mF$
00813 |BL] ;
g0l Ao
_— >

O

9jeuesfawod m
uopeuuioyu| Buj||ig




US 9,460,228 B2

Sheet 24 of 69

Oct. 4, 2016

U.S. Patent

V6 "Old

4
SNOISNA1X3
4OIAYH3E

89
SH01dI¥0S3d
31V1S

3H0LS (SINOISNILXE I40LS
HOIAYH3AE HOLdI¥0S30ILYLS

— — 0%
<9 7 HEMIIA
SESSUANINY SHOLdI¥053d JNIINNY
HOLS HO1dI¥OSIA 3H01S
JHOLS 81358V JOVHOVd dYHM EIMIIA VM

(ylomiaN AlaAlp(Q 1uslu0))
1UB WUOJIAUT deJpp



US 9,460,228 B2

Sheet 25 of 69

Oct. 4, 2016

U.S. Patent

|
T SHOLdI40S3d O4NI
$100. vd 3LVLS NOILVZITYNOS¥ad| ™\
INTIFOYNY W 891 691
[i}7
ﬂmao LT SHOLdI¥DS3a
ONIYOHLNY >
JHOLS / ¥IAYIS ~
HOLdI¥0S3A dvHM obL

4
SNOISNALX3
0% HOIAVHIE
dAMIIA
JWILNNY —
00y
WIHS
JUOLS/ 3NY3S

HIMIIATNILNNY

151

dd¥ dvdM/ H3ISMOHE

051

§91



U.S. Patent Oct. 4, 2016 Sheet 26 of 69 US 9,460,228 B2

190
RECEIVE REQUEST FOR WRAP PACKAGE O
v
192
FETCH CORRESPONDING WRAP )
DOCUMENT
y
194
DETERMINE RUNTIME ENVIRONMENT |~

IS VIEWER
NEEDED?

A y

197 198
DELIVER WRAP | DELIVERWRAP |/
DOCUMENT WITHOUT DOCUMENT WITH
VIEWER VIEWER

FIG. 10



U.S. Patent Oct. 4, 2016 Sheet 27 of 69 US 9,460,228 B2

202

DEVICE REQUESTS WRAP ad

v 204
WRAP SERVER RETURNS HTML SHIM [~
206
IS RUNTIME VIEWER NO 208
ALREADY AVAILABLE AT REQUESTING /
DEVICE?
REQUEST
YES RUNTIME VIEWER
212 v v
N | DELIVER RUNTIME
LAUNCH RUNTIME VIEWER < VIEWER
v 213
YES /' IS REQUESTED WRAP ALREADY L 210
AVAILABLE ON REQUESTED DEVICE?
v NO
REQUEST WRAP DESCRIPTOR FROM WRAP | 21*
PACKAGE STORAGE SERVER
v 216
WRAP PACKAGE STORAGE SERVER RETURNS WRAP |~/
PACKAGE DESCRIPTOR
|
L 218
220 YES DOES DELIVERED
\ WRAP PACKAGE HAVE AN
ASSOCIATED STATE DESCRIPTOR?
REQUEST/DELIVER NO
STATE DESCRIPTOR v f\2/22
DOES WRAP \YES 226
PACKAGE HAVE ASSOCIATED / 1 /
EXTENSION(S)?
) ©) REQUEST/RECEIVE
EXTENSION(S)
v
RUNTIME VIEWER GENERATES WRAP 228
HTML FOR REQUESTING DEVICE (FIG. 12) B
v 230
REQUEST/RECEIVE ASSETS —~
v 234
WRAP PACKAGE RENDERED ON —~
REQUESTING DEVICE BY POPULATING SHIM

FIG. 11



U.S. Patent Oct. 4, 2016 Sheet 28 of 69 US 9,460,228 B2

START v
228 266
se—| HANDLER ACTS ON
EVENT
v
251
BUILD OBJECT GRAPH |~
BASED ON DESCRIPTOR
(MODEL) 268 | UPDATE DISPLAY
"] STATUS OF MODEL
I (MODEL STATE)
BUILD DOM BASED ON | 253 i
OBJECT GRAPH
(VIEW) 269 VIEW STATE
|  UPDATES AS
I NEEDED BASED
rmmmmmm e Yoo | s ON NEW MODEL
i BROWSER RENDERS WRAP | % STATE
! BASED ON DOM !
! -
1 CONTROLLER
258
\-—| ASSOCIATE HANDLERSNAV
WITH WRAP BASED ON
CURRENT CARDM ODEL STATE
¥ i A 4 260
4< EVENT RECEIVED? C/
NO /
YES
v 262
NO /' EVENT DISPATCHER DETERMINES IF
THERE IS AN ACTIVE MATCHING
HANDLER
YES
y 264 NO 265
~ YES
DELEGATE EVENT TO ALID EVENTS

MATCHING HANDLER

FIG. 12



U.S. Patent Oct. 4, 2016 Sheet 29 of 69 US 9,460,228 B2

PROCESS WRAP
DESCRIPTOR

800
802 ;
INITIATE WRAP

INSTANCE AND
ASSOCIATE WRAP
METADATA WITH
INSTANCE

803

—»{  GET NEXT ITEM

806 807 808
CREATE NEW PROCESS CARD
CARD NODEIN | gEFESTlﬁ B%V“VA —» DESCRIPTOR |-
OBJECT GRAPH (FIG. 12B)
811 812 813
CREATE NEW CREATE PROCESS
COMPONENT | |ICORRESPONDING| ,| ~ GLOBAL |
NODES IN COMPONENTS COMPONENT
OBJECT GRAPH IN DOM DESCRIPTOR
815
PROCESS
GLOBAL >
ATTRIBUTE
PROCESS OTHER -
ITEM >

ITEMS IN WRAP
DESCRIPTOR?

FIG. 12A



U.S. Patent

Oct. 4, 2016

Sheet 30 of 69

US 9,460,228 B2

PROCESS CARD
DESCRIPTOR
(808 FIG. 12A)
818
ASSOCIATE CARD
METADATA WITH CARD
v ~_819
GET NEXT ITEM IN FROM 883
CARD DESCRIPTOR [* FIG. 12C
821
v 820 CREAOTXE#E\MN ITNEXT 822
IS NEXT ITEM A\ YES | OBJECT GRAPH CREATE NEW TEXT TO 870
T BOX, ANDPOPULATE [ BOXJIEMIN FIG. 12C
COMPONENT? WITH TEXT FROM
NO DESCRIPTOR
826 827
825 - -
X\ | CREATE NEW CREATE | ~—---22828
IS NEXT ITEM AN IMAGE NEW | REQUEST | ( TO 870
IMAGE COMPONENT?—® COMPONENT | IMAGE M "|MAGE A8 2c
IN OBJECT OBJECTIN| __ : :
o) GRAPH DOM
831 832
y- y
r 83 ves| CREATENEW CREATE Yt 2
|S NEXT ITEM A ! REQUEST ! TQ 870
VIDEO COMPONENT? COMPONENT || VvIDEO |
< > INOBJECT | | oBJecTIN | | VIDEO R AG 120
el GRAPH DOM | ——-—----
836 ~837 838
g35 ] CREATENEW | [CREATEIFRAME | I ~REQUEST |
WIDGET AND | [AND OPTIONALLY| | 'wibcer |
vEs | OPTIONALLY DIVINDOM | ' CONTENT !
EVENT || HAVINGSIZE | !rroM SOURCEL( 12870
CATCHING AND POSITION [ |NDICATED 1N\ F1G. 12C
o] | N || R
NO GRAPH pESCRIPTOR | 1.DESCRIPTOR |
-840 841 842
YES| CREATE LINK CREATE LINK
IS NEXT ITEM A LINKY 3| COMPONENT IN |—»| COMPONENT INj—{ Q870
< COMPONENT? OBJECT GRAPH DOM AG. 12C
N0 851 852 853 854
CREATE GALLERY CREATE PROCESS
IS NEXT ITEM A
ITEM NODE IN  |»{GALLERY ITEM |»|GALLERY ITEM
<GALLERY ITEM? OBJECT GRAPH IN DOM DESCRIPTOR
NO T 870
il 845 a4 FAG. 12C
VES[ ASSOCIATE ATTRIBUTE WITH
(1S NEXT ITEM AN CARD IN OBJECT GRAPHIC TO 883
ATTRIBUTE? AND DOM FIG. 12C
+ N0 848
PROCESS OTHER
ITEM FT|8_81823C FIG. 12B



U.S. Patent Oct. 4, 2016

FROM
FIG. 12B

870

ARE THEREMORE
ITEMS ASSOCIATED
WITH COMPONENT?

YES

NO

! 872

GET NEXT ITEM

A 4

ATTRIBUTE?

A\ 4

IS NEXT ITEM A
SUBCOMPONENT?

NO

y

874

IS NEXT ITEM AN \ VES

/877

YES

879

PROCESS OTHER ITEM

Sheet 31 of 69

TO 819
FIG. 12B

4

YES 883

ARE THERE MORE \NO
ITEMS ASSOCIATED
WITH CARD?

y

FROM 846
FIG. 12B

876

ASSOCIATE ATTRIBUTE
WITH COMPONENT IN

US 9,460,228 B2

885

DONE PROCESSING
CARD DESCRIPTOR
(TOB817 FIG. 12A)

OBJECT GRAPH AND
DOM

878

PROCESS

SUBCOMPONENT

v

FIG. 12C



US 9,460,228 B2

Sheet 32 of 69

Oct. 4, 2016

U.S. Patent

€L Old

P

L0171

<TWAY/>
<Apoq/>
07, ~ ~—_<3dTI08/><.¥6LE90LGETCF TS "UuTRW/,,=DaS 3dTIOS>

Qév\\}/{\A>HU\VA:M®GHMMGOU|QWME MBTA-DU,=SSBTD ATD>
<wApoq,=pT Apoq>
<pesy/>
</ w/uw=3F23Y oseq>
</ Jbud-ausaedsueaqy
N —uoDTARIdRIM/SSDRWT /=21y ,Dbud/ebeut,,=2dA1 ,U0DT,=T2I HUTT>
<
\ :H@@QW@H%PW:HH@H :W@PM@OP@MﬂNWHW@@U.Gﬂ@E\ZHMQHQ HUTT>
G0yl </ w.SSsD
/3¥32,=9dA] ,399UsSTALS,,=T2T ,00L ‘009 ‘00% ‘00€:sueg+UsdO=ATTWRIZSSO
JuoD *stdesTboob sjuol//,,=I=2ay JUTT>

L0Vl -~ > <PTATA/>dRIM<OTITA>

</ LIN-TEWTIUIW ‘OU=0TORTROS-IOSN ‘T=0TR0S-WNWIXEeW ‘T=0780S-TRTITUT
‘YIPTM-SDTASP=U1PTM,=1US3UCD ,3I0dMSTA,=SWEU BIDW>
A\ wB—JF3N,=398IryD BISU>
<pesy>
<TU3Y>
<TW3Y HdALDCdi>

oovv|\\\\x




US 9,460,228 B2

Sheet 33 of 69

Oct. 4, 2016

U.S. Patent

a3

685

naLl
Quvo T | | AETvO
065~ p65- 265~
13oam || NoILyooT NI 03aIA ovinl || xog baL || vanvinod
985~ 185~ 085~ 786~ ¢85 785~ 085
IN3NOdINOD




US 9,460,228 B2

Sheet 34 of 69

Oct. 4, 2016

U.S. Patent

. |
GlL Old !
“
" 095
_ HIOVNYIN TES
“ 31VIS AUV HEIT
! NOILINI43a
_ HOIAVHIS
|
|
“ 5
! ¥3TANYH AYN
G 3
| 305 ANIONT
! Y3 TANVH ¥OIAVHAE
_ INIAT
4
00§ “
| 0%
016 (%
m HdVaD %E_% Wod ¥OLdI40$3a
173rg dVHM
m 03180 ¥3a7INg 90
| ¥3Z1vI¥3S3a
“ (0572 0G%
! ANIONT JOYNYI
_ a3 ALILNAQ
|
|
i INIINNY v I
¥ISMONd



US 9,460,228 B2

Sheet 35 of 69

Oct. 4, 2016

U.S. Patent

91 "Old

ININOd OO INIAN3d3a

SA1NAI-YLLY 4IHIO <—
SHOIAVHIE <+—

SATALS +—
J1VLS ININOdINOD <—

| 13340 INANOdINOD <—

[ ]
¢ 123rd0 INANOdINOD —

S103rdo

1~ ayvd
\1\.
tmtm \ SNOILINI42a ayvd
0 e

| I W Wy

¥ Quvd
Z QuY0 m
7 % .
. .
[ ]
«
M T QYYD wﬁ_ N 089
11 QYYD
{ 1 Q4vD ) z m
m;\az \ € 4dvo
QD
IN3AN3d3C m ¢ 4dvo
L QY0
N—m.\ NN
ayvo

ovm.\A




U.S. Patent Oct. 4, 2016 Sheet 36 of 69 US 9,460,228 B2
HANDLER 610
RULES [
ENGINE
CURRENT
HANDLER
HANDLER SET
REGISTRY e
‘ 4
612 614
PAN,Q",'X’?“V[')E@FT{' ON STATE MANAGER
540 560
EVENT HANDLER CORE FEED EVENT DISPATCHER
507 1> 620
SYSTEM EVENT SCHEDULER CONNECTION
OTHER 630 MANAGER
REG. 635
ul| SENSOR | GED | pasep |TIMERS | |

YY) )

651 653 655 657

FIG. 18



U.S. Patent Oct. 4, 2016 Sheet 37 of 69 US 9,460,228 B2

700
\

o)

—>
seeco ATRT = 9:20 AM *
+Q. HOME QA
National Geographic@NatGeo 2sm | A 720
How do injured birds get new
feathers? on.natgeo.com/1Pi4KYJ
« 311 W5
/ - ¥ 49ers sports retweeted
San Francisco 49ers%49ers Thr
Get to know all about the
#49ersDraft class of 2015. 49rs.co/
cgfvl2
725

DRAFT

2< S-SR R %

San Francisco 49'ers
2015 Draft Picks!

[~ « 1327 135 — +Q
Q ™ L,
Home Notification Messages Me

730 // — 732

y

FIG. 19A




U.S. Patent

722

728 —

US 9,460,228 B2

Oct. 4, 2016 Sheet 38 of 69
O \
G|
eeec0 ATRT = 9:20 AM *
+Q, HOME QF
43 49ers sports retweeted

i

San Francisco 49ers%4e9ers i A——— 720

Get to know all about

#49ersDraft class of 2015. 49rs.co/

cgfvl2

San Francisco 49'ers
2015 Draft Picks!

“« 327 Y35 +Q,
L/ 2 o 2
Home Notification Messages Me

\_

J

FIG. 19B

701
V
: (swipe ¢



U.S. Patent Oct. 4, 2016 Sheet 39 of 69 US 9,460,228 B2

———

T

—>
see00 AT&T = 9:20 AM Y=1]
+Q HOME Q &

13 49ers sports retweeted
San Francisco 49ers%469ers th A——— 720

Get to know all about
#49ersDraft class of 2015. 49rs.co/
cgfvl2

702

722 <

Get to know the
strengths of #49ers
first-round pick
@arikarmstead.
Scouting Report:
49rs.colohs5PC

\ “ 1327 ﬁzssl +0,
% 9 ™ &

Home Notification Messages Me

- J

FIG. 19C

728 —




U.S. Patent

pr—

722

728 —

Oct. 4,2016 Sheet 40 of 69 US 9,460,228 B2
4 o )
— >
seeco ATRT & 9:20 AM *
+0 HOME QF
43 49ers sports retweeted
San Francisco 49ers%49ers AT 720

i

Get to know all about

cgfvl2

e
#49ersDraft class of 2015. 49rs.co/

[.].]@

S

49ersV5 ers vs.
\kmgs |ngs

‘ .Y /k/n

\
Get your season
tickets or single
tickets here 49ers

49ers
rkmg

703

/ FANS! !
« 327 Ye35 0,
Q & L,
Home Notification Messages Me

L

J

FIG. 19D



US 9,460,228 B2

Sheet 41 of 69

Oct. 4, 2016

U.S. Patent

A

a0¢ "Old

©

S

9dGsyo/0d'sigy
:1J0day Buiinoodg
‘PR3]S W.IeY1Ie)
¥oid punoJ-}siij
sIogy# JO sylbualls
9y} MOUY 0} J89

vo¢Z 'Old

(©

N

iSYold eid G10¢
slg,

6% 00SIoURI UBS

L

> m&?wv

LAVHA

.

004



U.S. Patent Oct. 4, 2016 Sheet 42 of 69 US 9,460,228 B2

®—\ 740
=i = \/
SR L DANE 1 49GAME1 %

A9ers VS- \ers vs.[FErS v_Gap
\ikings _{ings Viking 99rs v;

Vlk"”Qs '

703

=

W Sy

oty
w e AA\
(4 A
-

S
R
SHIg

-
-, N
-~

~

-

Get your season
tickets or single
tickets here 49ers
FANS!!!

. @

FIG. 20C




U.S. Patent Oct. 4, 2016 Sheet 43 of 69 US 9,460,228 B2

% ®'—\\/740
=Te 1 DANMEL |—CAWE] %
29ers VS- |ers vs.[49ers v aiess
Vikings _lings Viking 49ers -
Vikings [ | 703
\/
m~ Buy Now
Get your season
tickets or single
tickets here 49ers
FANS!H! -
730 “ 3 27 ﬁ35/\\/

731

@

FIG. 20D




U.S. Patent Oct. 4, 2016 Sheet 44 of 69 US 9,460,228 B2

O
— O
eeeco ATET = 9:20 AM »ED
+Q HOME Q &

720

National Geographic@NatGeo 25m
How do injured birds get new
feathers? on.natgeo.com/1Pi4KYJ

« 2311 W5

/ 43 49ers sports retweeted
San Francisco 49ers%49ers 1hr
e

Get to know all about
#49ersDraft class of 2015. 49rs.co/
cgfvl2

701

< %
722
% (swpe ¢

San Francisco 49'ers
2015 Draft Picks!

\
~ “« 327 Pess— R
8 Q 2\ 2
Home Notification Messages

733

%
- 9 @




U.S. Patent Oct. 4, 2016 Sheet 45 of 69 US 9,460,228 B2

1100
N

o)

——>
eeeco ATRT = 9:20 AM *
(X Search ] 5=
#Status | Photo | © Check In

The San Francisco 49ers v 752

Today at 11:15AM *+®
%‘ /‘\J

Get to know all about the 49ers Draft
Class of 2015.

725
= o /
. 750
LT ~__"
254K Likes 9.6K Comments
0y Like l:]Com‘ment ﬁShar\e
Z
1
762 The The Weather Channel v [~
Weather |  Yesterday at 1:30PM™~<® 760
Channel
\\
= | [N\
New Feed Requests Messenger Notifications More 761

J

FIG. 22A



U.S. Patent Oct. 4, 2016 Sheet 46 of 69 US 9,460,228 B2

r——

o)

—>
see00 ATRT = 9:20 AM *
The San Francisco 49ers v
. . @
% Today at 11:15 AM 59
Get to know all about the 49ers Draft I /
Class of 2015.
V
725
//\_
VSWIPE <
1 N——
San Francisco 49'ers
2015 Draft Picks!
750
LT~
254K Likes 9.6K Clomments
& Like CJ Comment # Share
Z | \
762 NewEFeed Rquue%s Mescs%gm\ No%tions % \760

e
761

FIG. 22B



U.S. Patent

Oct. 4, 2016

r——

Sheet 47 of 69

-~

~

San Francisco
49ers

2015 Draft

Round 1: Sam Jones

Round 2; Tim Johnson

Round N: Jumbo Smith

-

©

US 9,460,228 B2

771

L

FIG. 23A



U.S. Patent Oct. 4, 2016 Sheet 48 of 69

Sam Jones
Position: Running Back

College: Alabama State

FIG. 23B

University
772a
Profile: T~
Tim Johnson
Position; Quarterback
College: UCLA
772b
Profile: T~
Joe Flowers
Position: Center
College: Notre Dame
University
772¢
Profile: "

US 9,460,228 B2



U.S. Patent Oct. 4, 2016 Sheet 49 of 69 US 9,460,228 B2

Jr———

o)

— >

+ San Francisco 49ers Z
& 22K Twesets O\ g
[ Tweets Media Favorites ]

San Francisco 49ers @49ers 23m
% Watch the #49ers pre-rookie

minnicamp media session; 49rs.co/
Hmlz4H

773

730 | 732

LN
~_ _+ T« 23191 Ye139————_ L

San Francisco 4%ers @49rs 20 [~ 731
All 10 of the #49ers 2015 draft picks have

been signed.

VIEW: 49rs.colCt5g6

Home Notification Messages Me
|

- J

FIG. 23C




U.S. Patent Oct. 4, 2016 Sheet 50 of 69 US 9,460,228 B2

o)

774

Buy your 49er Gear!!

327
e

©

FIG. 23D

L




U.S. Patent Oct. 4, 2016 Sheet 51 of 69 US 9,460,228 B2

r——

o)

— >

+Q, HOME Q A&

Office 365 @Office365 23m
@ Check out this #MSlIgnite On-Demand

session.

] O
OO Microsoft Ignite
0 —Ha Spark the future

. :I O May 4-8 2015
KEYNOTE Chicago IL

«1 33 36 +Q

SportsCenter @SportsCenter Thr
SCis out of this world today.
@TBLightening astronauts...

770

732

ol [TRTRIRTITIII:

730

£310  Ye12K

)

731

National Geographic@NatGeo 25m
How do injured birds get new

<) M &

Home Notification Messages Me
I

J

FIG. 24



U.S. Patent Oct. 4, 2016 Sheet 52 of 69 US 9,460,228 B2

O
(Q Search ] Si=
(#Status | Photo | @ Checkln
History v
|H Today at 10:02 AM* ®
HISTORY.

The critically acclaimed drama #MadMen comes to

an end this week, and fans are wondering what will
become of its enigmatic hero, don Draper. One longrunning
theory suggests he might take on yet another

identity -- that of elusive skyjacker D.B. Cooper, who
umped o...Continue Reading

s D.B. Cooper? -- Ask

Who wa
HISTORY

780 www.history.com
1K Likes 3K Comments 760
|| —— H—~ 7
762 0 Like (3 Comment A Share
The The Weather Channel v
Weather | Yesterday at 1:30PM * ® ~ 761
Channel

13 [CHANGING PATTERNS

LTUESDAY PM | \\
L @ @ S

New Feed Requests Messenger Notifications More
1

FIG. 25



U.S. Patent Oct. 4, 2016 Sheet 53 of 69 US 9,460,228 B2

5716

A
GET READY FOR DREAMFORCE 791

088 |22 [21 04 |~

DAYS ~_/ HOURS MINS —— SECS

\ Ki‘ SWIPE «

FIG. 26




US 9,460,228 B2

Sheet 54 of 69

Oct. 4, 2016

U.S. Patent

a.¢ Old

([ ©

J

()91 —

/lm_:m_.;m._ snyjuein

v.¢ "Old

4 ©) N

soisAydol)se
10 Juswiedep 8y} Je UONRIO0SSE L0Ieasa.
e pue 80edg pue yjieg Jo} Jajuag) asoy
3y} Je wnlejsue|d UspAeH ay) Jo J0jeali] 950y
d Yolipald ayy Ajus.uno s| 9H J0JEOIUN W WOD
39UsI0s pue ‘Joyine ‘ispisAydosy
Ued|JaUY Ue S| LUosA| 8ssesnsp BN

NOSAL
45SVHO4d
114N

| C—

/(."_ o




US 9,460,228 B2

Sheet 55 of 69

Oct. 4, 2016

U.S. Patent

(€)HaL —

(€19l

(€)9LL —

d.lc "Old

a © N

] 1J8][81S enIooueh)

- Aep s19|191S

L1

(2H9) —

(2)191

(2911 —

J.¢ "Old

r © N

susb|n4 sausbng

. Juso1lube |y




U.S. Patent Oct. 4, 2016 Sheet 56 of 69 US 9,460,228 B2

POOLSIDE BUNGALOW

Each of our six Poolside Bungalows
offers a spacious bedroom with King
Hastens bed, living area, and
outdoor seating.

Book Now (o $395

\

FIG. 27E



U.S. Patent Oct. 4, 2016 Sheet 57 of 69 US 9,460,228 B2

40

Wrap Descriptor:
Wrap
® Meta Data { Wrap Name, Author, Version, etc.
5’
(" Card 1 Descriptor, Card 1 Meta Data
° Card Card 2 Descriptor, Card 2 Meta Data
Descriptors < .
.
46
q Card N Descriptor, Card N Meta Data
Global
¢ Com ppnent{ Media Widget
Descriptor

1802

. Card
Designator < 1,2,5,7,9

1803

Global

® Component < Navigational Behavior(s)
Descriptor

1804

o Card
Designator 4 1,2,3,...N
1805’//

FIG. 28



US 9,460,228 B2

Sheet 58 of 69

Oct. 4, 2016

U.S. Patent

vl

6¢ Old

INOYS pue 1SIM| Saeag

/8081
|
—e—@ K I DI
L2:€
- |@® @
IN0OYS pue Jsim| :s9fjesq
- | @
n
@
n

142

0l



U.S. Patent Oct. 4, 2016 Sheet 59 of 69 US 9,460,228 B2

10 14

14 /

@\/1810

e,

1812 (;] l"

FIG. 30A

The Beatles N\ 14

Back in the USSR
Dear Prudence \

Blackbird r}ﬁ
Glass Onion )
A

Julia

1814

DO~ IN]—

Revolution

FIG. 30B



U.S. Patent Oct. 4, 2016 Sheet 60 of 69 US 9,460,228 B2

.
dtawaiian
VYacation
N~
10




US 9,460,228 B2

Sheet 61 of 69

Oct. 4, 2016

U.S. Patent

¢€ "Old

“aJeme[dq ay)
passo0.) uolbuiysepy ab.10ag)
9//1 ‘Gz Joquwiadsg up

N
“"gJeMefs(] 8yl

passou) uoibuiysepp ab610s9

9//) “6g Jequisde( uo

vl

_/



U.S. Patent

Oct. 4, 2016 Sheet 62 of 69 US 9,460,228 B2

450

~

452

SELECT FIRST COMPONENT (CARD SPECIFIC OR GLOBAL) -~/
v 454

> GENERATE DATA OBJECT FOR COMPONENT ~/
i 456

GENERATE DATA OBJECT FOR CONTENT OF COMPONENT ~/
i 458

GENERATE DATA OBJECT(S) FOR ATTRIBUTE(S) OF COMPONENT ~_/
i 460

GENERATE DATA OBJECTS FOR STYLE(S) OF COMPONENT ~/
i 462

GENERATE DATA OBJECT FOR ANY TRIGGER ASSOCIATED L~/

WITH THE COMPONENT

v 464

GENERATE DATA OBJECTS FOR ANY BEHAVIOR(S) —~/

ASSOCIATED WITH THE COMPONENT
468 v 166
~_/
INCREMENT YES ANY ADDITIONAL
TO NEXT CARD AND/OR GLOBAL
COMPONENT COMPONENTS?

470

~_/

ASSOCIATE META DATA WITH CARD

¢ 472

GENERATE CARD DESCRIPTOR FROM DATA OBJECT(S) ~_/

AND META DATA

!
FIG. 33



U.S. Patent Oct. 4, 2016 Sheet 63 of 69 US 9,460,228 B2

480
START 2
482
SELECT FIRST CARD OF WRAP PACKAGE ~/
¢ 484
> GENERATE CARD DESCRIPTOR (FIG. 33) FOR CARD ~
INCREMENT YES ARE THERE
TO NEXT CARD ADDITIONAL CARDS
IN WRAP IN WRAP PACKAGE?
438 490
ASSOCIATE META DATA WITH WRAP PACKAGE ~
¢ 492
GENERATE WRAP DESCRIPTOR FROM CARD DESCRIPTOR(S), }~_/
DATA OBJECT(S) FOR GLOBAL COMPONENT(S) AND META DATA

DONE

FIG. 34



US 9,460,228 B2

Sheet 64 of 69

Oct. 4, 2016

U.S. Patent

HOLYM LYINS
\@
¢l 206¢
AL LYINS b
1001
. «— ONINOHLNY dvHM
doL%s3a
C
HOLdNOS3A
dvam
1378vL
o <4
_ N
7l
INOHd of
<
A
SN

905¢€

01G€

JOVHOLS
JOVHOVd dVHM

NHOMIIN AH3IAITAA
IN3INOO dVdM

INING

\\

v05¢ ™|

WONIHL:

v\i\

NOILVOHILON




U.S. Patent

US 9,460,228 B2

Oct. 4, 2016 Sheet 65 of 69
START

3602

AUTHOR WRAP PACKAGE ~_/
3604

"THING' DETECTS TRIGGER EVENT L

y

3606

GENERATE NOTICE OF EVENT gy
3608

IDENTIFY RECIPIENT(S) —~_/
3610

SELECT APPROPRIATE CONTENT, APPLICATION L

FUNCTIONALITIES, AND/OR E-COMMERCE SERVERS
BASED ON TYPE OF EVENT
DYNAMICALLY INSERT OR ASSOCIATE CUSTOM | 3912
CONTENT WITH THE WRAP PACKAGE

GENERATE WRAP DESCRIPTOR FOR WRAP 3614

PACKAGE s

!

3616

DELIVER WRAP DESCRIPTOR ~_/
v 3618

RECIPIENT(S) INTERACT WITH WRAP PACKAGETO  |~_~

ADDRESS TRIGGER EVENT

",

3600

FIG. 36



U.S. Patent Oct. 4, 2016 Sheet 66 of 69 US 9,460,228 B2

3715

3700D
3715

/

3715

e

- 3716
/]

- 3716
p

[ap o o)

71
[ Make an Appointment Now |
712
710
3712
[ Make an Appointment Now |

T

3700C

),
3713
71

o

FIG. 37A | FAG. 37B

37008

o~

_J

3710

3710
71

lap

FIG. 37A

3700A

3710
712
3712

o

/-\/
3700




US 9,460,228 B2

Sheet 67 of 69

Oct. 4, 2016

U.S. Patent

- ANg
bele - g/¢ OH | Vi€ OH a.¢ 914
] AW 00.€
SL.¢ x\;{\\
0LZE
P AN m‘ )
pzLE .
u 0T 8IZE
] F4Wiy
) w | @
A uonoung 1yH) /
H00.£
N ~ ~ ~
d 900.¢ z7Le 400.¢ 300.¢
y7.¢
4Wid
N
GLLE
01ZE




US 9,460,228 B2

Sheet 68 of 69

Oct. 4, 2016

U.S. Patent

m MON u
LNIFWINIOAdY IHVY N -
g8¢ Ol | v8e 9K V8¢ ©Ol4d
JONVI1ddY
AvE
MON
Dzm WINIOddY mv_<_\D E %%
(=
0402 SS
THAOW 3O
SNOILONYLSNI
INFNOV 143
FONVIdd¥ IR SEIRIEREEIRZY)
N3V YALVM ¥NOA 30V1d3Y
OL3NIL 21110917 [BJBUSD)
ﬁ MON U \\ \ \k
LNBWINIODdY 3¥ I 2008¢ 8008¢ ¥008¢
HIvd3y 3 30IAY3S

JONVI1ddY

aoose v




US 9,460,228 B2

Sheet 69 of 69

Oct. 4, 2016

U.S. Patent

H008€E

N~

Ang

YoeS/00'6€$

19|14 J9¥epM 3D

A1ddnS
JONVI1ddV LNNO3SId

48€ Ol4 | ¥8¢ Dl4

98¢ "Old

e Hu
49e9/00°05$ C— )
19)|4 1918 saAljejuasaldey siinis OIE
M BIEM D 92IAJ9S J9) v YHHE 1O\ MO
A|ddng aouelddy M 1BYD) Inoj bBuieisu|
o ©008¢ 4008¢ 3008¢
00001$

B4 BleM 39
NOZVYINY




US 9,460,228 B2

1
GENERATING AND DELIVERING A WRAP
PACKAGE OF CARDS INCLUDING CUSTOM
CONTENT AND/OR SERVICES IN
RESPONSE TO A TRIGGERED EVENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation in Part of U.S. patent
application Ser. No. 14/678,316, filed on Apr. 3, 2015, which
is a Continuation of U.S. patent application Ser. No. 14/669,
395, filed Mar. 26, 2015. U.S. patent application Ser. No.
14/678,316 also claims the benefit of U.S. Provisional Patent
Application No. 62/062,056 and 62/062,061, both filed Oct.
9, 2014. U.S. patent application Ser. No. 14/678,316 further
claims priority of U.S. Provisional Patent Application Nos.:
62/084,171, filed Nov. 25, 2014; 62/091,866, filed Dec. 15,
2014; 62/114,675, filed Feb. 11, 2015, and 62/133,574 filed
Mar. 16, 2015. Each of these priority applications is incor-
porated herein by reference.

This application claims the benefit of U.S. Provisional
Patent Application No. 62/195,642 filed Jul. 22, 2015; and
62/210,585, filed Aug. 27, 2015. In addition, this application
claims the benefit of U.S. Provisional Application No.
62/145,360, filed Apr. 9, 2015; 62/170,438 filed Jun. 3,
2015; 62/170,569 filed Jun. 3, 2015; and 62/193,830, filed
Jul. 17, 2015.

All of the above-listed priority applications, including any
appendices and/or exhibits, are incorporated herein for all
purposes.

BACKGROUND

This invention relates to delivery of content and services
over the Internet, and more particularly, to the generation
and delivery of a wrap package of cards, including custom
content, such as multi-media, application functionality and/
or e-commerce related services, in response to receipt of a
notification from a “Thing”, among the “Internet of Things”,
indicating that a trigger event has occurred.

The “Internet of Things” refers to the network of physical
objects or “Things”, embedded with electronics, software,
sensors and network connectivity, that enables these objects
to collect and exchange data. Since each “Thing” is uniquely
identifiable, it can be sense, inter-operate, and be remotely
controlled over the Internet. As a result, the Internet of
Things creates wide opportunities for interaction between
the physical world and computer-based systems, resulting in
the delivery of improved performance, services and effi-
ciency.

Many companies are now taking advantage of all the
capabilities and benefits offered by the Internet of Things.
With home automation systems for example, it is now
possible for a home owner to remotely monitor and control
numerous aspects within their home, such as security, tem-
perature control, lighting, etc. For example, a home security
system may notify the home owner that their garage door has
been left open. In response, the home owner may remotely
close the garage door by, for example, by logging into an
online account or accessing an application or “app” on their
mobile phone provided by a security company and/or garage
door company. Similarly, the home owner can be notified
that the indoor temperature within the house on a particu-
larly hot day has exceeded a predetermined threshold. In
response, the home owner can remotely turn on the air
conditioner to cool the house down while away. In a similar
manner, other aspects of the home can be remotely con-

20

25

30

40

45

50

55

2

trolled, for example, by turning lights on or off, turning
various appliances on or off, locking or unlocking doors
and/or windows, etc.

It should be noted the aforementioned examples of home
automation are merely illustrative and in no way should be
construed as limiting. On the contrary, just about any object
or “Thing” can be connected to and included among the
Internet of Things. Depending on the nature of a given
Thing, it can be sense, inter-operate, and remotely controlled
over the Internet. In some circumstances, the Thing can
inter-operate and/or be controlled by another Thing, a
remote computer or other type of non-human sensor or
controller. In other circumstances, however, the notified and
controlling entity is a designated person or persons. When a
predefined trigger event has occurred and is sensed by the
Thing, a notification is generated. In response to the notifi-
cation, the designated person(s) can interact with and/or
remotely control the Thing over the Internet.

One current problem with Things designated to interact
with and/or be controlled by humans, in response to trigger
events, is that typically the notifications are not necessarily
user friendly. Most notifications are in the form of either a
text and/or email message. In either case, the recipient is
required to review the message on their phone or computer.
Then, if he/she chooses to take responsive action, the
recipient is usually required to then either log into an
account and/or access an app to control or otherwise interact
with the Thing. In some circumstances, for example in
response to an emergency or other security event, the
notification can be a telephone phone call to one or more
designated recipients. Again, in response to the phone call,
the recipient(s) are typically required to take appropriate
corrective action.

In general, text, email and/or phone call notifications are
of limited value. With any of these options, the notification
provides no other content, such as multi-media in the form
of images, photos, video, application functionality and/or
services that may be helpful in addressing the trigger event
and/or otherwise accessing or controlling the Thing. Con-
sequently, a more user friendly, interactive, multi-media
system and method for delivering media content, services
and/or application functionality in response to Internet of
Things triggered events is therefore needed.

SUMMARY

Systems and methods for creating and delivering wrapped
packages of cards are disclosed. With wrap packages, each
card is selectively authored to include content such as (i)
multi-media, (ii) application functionality and/or (iii) e-com-
merce related services. In addition, the cards are authored
into one or more linear sequences. In optional embodiments,
the content can further be authored to convey a “narrative”
that unfolds as the cards are sequentially browsed in their
linear order(s). Thus, when the wrap is consumed, the
viewer experience is enhanced and is more engaging com-
pared to other types of content delivery methods, such as
web sites, PDFs, or applications, particularly on mobile
devices. As a result, it is more likely that viewers will
consume the media and partake in the functionality and/or
services delivered through the wrap compared to the above-
listed prior art content delivery methods.

In one non-exclusive embodiment, the system and method
is directed to the creation and delivery of a wrap package
“on the fly” in reply to a triggered event generated by a
“Thing” among the Internet of Things. When a notice of the
event is received, a wrap package, including custom content



US 9,460,228 B2

3

presented within a plurality of cards arranged in one or more
linear sequences, is generated. In various embodiments, the
custom content selectively encompasses, but is not limited
to, one or more media types, application functionality and/or
e-commerce related services. Once authored, a wrap
descriptor for the wrap package is generated. The wrap
descriptor includes a plurality of card descriptors, each card
descriptor arranged to define content, a structure and a
layout of an associated one of the cards respectively. The
wrap descriptor is then delivered to a computing device
associated with an identified or designated person(s) asso-
ciated with the Thing. When consumed, the computing
device generates a runtime instance of the wrap from the
wrap descriptor, including the custom content presented in
the plurality of cards arranged to be browsed in the one or
more linear sequences.

The custom content is preferably selected or otherwise
defined at least partially based on the type of Thing, the
trigger event and/or the designated recipient(s) of the wrap
package. Accordingly, in various embodiments, the custom
content may include, but is not limited to, information
pertinent to the Thing, instructional content addressing how
address or respond to the triggered event if applicable,
contact information for reaching local authorities, repair
facilities, application functionality to schedule an appoint-
ment, chat with a online representative, the ability to pur-
chased related goods and/or services, etc.

Wrap packages are also highly portable objects that can be
easily distributed and saved similar to electronic messages.
With these attributes, it is easy to quickly deliver wraps,
particularly to mobile phones. By distributing wrap pack-
ages in this manner, multi-media content, application func-
tionality, and/or e-commerce related services can be easily
distributed where and when it matters the most—immedi-
ately to the mobile phone of designated person(s)—right
after a trigger event is detected. Wraps thus have the unique
ability to transform the mobile phone into a powerful tool by
intimately contacting designated recipients at their point of
immediacy, delivering a user friendly, interactive, multi-
media experience, that delivers needed content and services,
far beyond what existing notifications in response to trigger
events by Things currently provide.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention and the advantages thereof, may best be
understood by reference to the following description taken
in conjunction with the accompanying drawings in which:

FIG. 1 is a diagram illustrating a wrap package layout that
includes a plurality of cards threaded together so as to be
viewable in linear arrays in accordance with the principles of
the present invention.

FIG. 2 is a diagram depicting the design, functionality and
data integration capabilities of a representative card in a
digital companion wrap package according to the principles
of the present invention.

FIG. 3 is a diagram illustrating the media content and
distribution model for distributing digital companion wrap
packages in accordance with the principles of the present
invention.

FIG. 4 is a block diagram of a representative system for
authoring, storing, distributing and consuming wrap pack-
ages in accordance with the principles of the present inven-
tion.

FIG. 5A diagrammatically illustrates selected components
associated with defining and rendering a representative wrap
package.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5B diagrammatically illustrates selected components
associated with defining and rendering a representative wrap
package in accordance with another embodiment that uti-
lizes state descriptors and/or behavior extensions.

FIG. 6 is a diagram illustrating the hierarchy of a wrap
descriptor.

FIG. 6A is a diagram illustrating the hierarchy of a
particular card descriptor.

FIG. 6B is a diagram illustrating the hierarchy of'a second
card descriptor embodiment.

FIG. 6C is a diagram illustrating the hierarchy of an
embodiment of a gallery card descriptor.

FIG. 6D is a diagram illustrating the hierarchy of an
embodiment of a trigger component descriptor.

FIG. 6E is a diagram illustrating the hierarchy of an
embodiment of a feed descriptor.

FIG. 6F is a diagram illustrating an embodiment of a
widget descriptor.

FIGS. 7A-7M are a series of cards of an exemplary wrap
package.

FIGS. 8A-8H are a series of cards for implementing an
exemplary purchase of products through a wrap package.

FIG. 9A is a diagrammatic representation of a wrap
distribution environment highlighting item stores useful in
delivering wrap packages.

FIG. 9B is a diagrammatic representation of an alternative
server/store architecture suitable for delivering wraps.

FIG. 10 is a flow chart illustrating a method of delivering
a wrap package to a consuming device.

FIG. 11 is a flow chart illustrating a shim based method
of delivering a wrap package to a consuming device.

FIG. 12 is a flow chart illustrating a method of generating
a view based on a wrap descriptor and updating the view
based on user inputs.

FIGS. 12A-12C illustrate a flow chart diagrammatically
illustrating processing a wrap descriptor to create an object
graph and DOM.

FIG. 13 illustrates the contents of a representative shim
suitable for use in the method of FIG. 11.

FIG. 14 illustrates a representative wrap component
model.

FIG. 15 is a block diagram illustrating various compo-
nents of an exemplary wrap runtime viewer.

FIG. 16 is a block diagram illustrating various compo-
nents of an exemplary object graph.

FIG. 17 is a block diagram illustrating components of an
exemplary event handler.

FIG. 18 is a diagram illustrating components associated
with a representative event handler.

FIG. 19A illustrates a Twitter data feed rendered on a
mobile device that has a wrap cover included therein.

FIGS. 19B-19D illustrate selected cards of the wrap
associated with the wrap cover of FIG. 19A rendered in-line
within the Twitter data feed.

FIGS. 20A-20D illustrate selected cards of the wrap
associated with the wrap cover of FIG. 19A rendered in a
new frame that occupies the entire screen of the mobile
device.

FIG. 21 illustrates a selected card of the wrap associated
with the wrap cover of FIG. 19A rendered in-line within a
Twitter data feed at a different aspect ratio than shown in
FIGS. 19B-19D.

FIG. 22A illustrates a Facebook news data feed rendered
on a mobile device that has a wrap cover included therein.

FIG. 22B illustrate the first card of the wrap associated
with the wrap cover of FIG. 22A rendered in-line within the
Facebook data feed.



US 9,460,228 B2

5

FIGS. 23A-23D illustrates an exemplary wrap package
with a media feed card embedded therein.

FIG. 24 illustrates a wrap Twitter card arranged to incor-
porate a personal twitter data feed into a wrap package.

FIG. 25 illustrates a wrap Facebook card arranged to
incorporate a Facebook news data feed into a wrap package.

FIG. 26 illustrates a card incorporating a countdown
widget.

FIGS. 27A-27E illustrate a series of cards of another
exemplary wrap package.

FIG. 28 is a diagram illustrating the hierarchy of a wrap
descriptor that includes global components.

FIG. 29 illustrates a global media player widget appearing
within all of the cards of a wrap.

FIG. 30A illustrates a global audio widget appearing
within all of the cards of a wrap.

FIG. 30B illustrates a play list overlay associated with the
audio widget of FIG. 30A.

FIG. 31 illustrates a wrap package that includes an
alternative global audio widget.

FIG. 32 illustrates a global behavior.

FIG. 33 is a flow chart illustrating a representative process
for generating card descriptors.

FIG. 34 is a flow chart illustrating a representative process
for generating a wrap that includes global components.

FIG. 35 illustrates an infrastructure for generating and
delivering a wrap package in response to a trigger event
generated by a “Thing” among the Internet of Things in
accordance with a non-exclusive embodiment of the inven-
tion.

FIG. 36 illustrates a flow diagram for generating and
delivering a wrap package in response to a trigger event
generated by a Thing among the Internet of Things in
accordance with a non-exclusive embodiment of the inven-
tion.

FIGS. 37A-37B illustrates exemplary wrap package of
cards with empty content containers in accordance with a
non-exclusive embodiment of the invention.

FIGS. 38A and 38B illustrate an example of a wrap
package generated and delivered with custom content in
response to a notification received from a Thing indicating
that a trigger event has occurred in accordance with the
present invention.

In the drawings, like reference numerals are sometimes
used to designate like structural elements. It should also be
appreciated that the depictions in the figures are diagram-
matic and not to scale.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The invention will now be described in detail with refer-
ence to various embodiments thereof as illustrated in the
accompanying drawings. In the following description, spe-
cific details are set forth in order to provide a thorough
understanding of the invention. It will be apparent, however,
to one skilled in the art, that the invention may be practiced
without using some of the implementation details set forth
herein. It should also be understood that well known opera-
tions have not been described in detail in order to not
unnecessarily obscure the invention.

The present disclosure is directed to the mechanisms that
support the distribution of media content, and a correspond-
ing palette of application functionality and/or e-commerce
related services, in the form of wrapped packages of cards
(interchangeably referred to herein as a “wrap”, “package”
or “wrap package”).

10

15

20

25

30

35

40

45

50

55

60

65

6

A wrap package, which includes a set of cards arranged in
one or more predefined sequences, is a unique delivery
mechanism for the distribution of authored content and
functionality. Wraps are typically characterized by the fol-
lowing:

(a) Each card is selectively authored to include media,
such as text, photos, images, video, documents, etc. Since
the cards are arranged in their one or more sequences, the
media can be authored to convey a “story telling” narrative
that unfolds as the cards are sequentially browsed;

(b) The cards of wraps can also be selectively authored to
include web or application like functionality;

(c) The layout of the content of any particular card is
immutable. That is, the positional relationship between the
displayed components of any given card remains the same,
regardless of the size, width, height, or type of display on
which the wrap is rendered;

(d) The cards of a wrap all have a defined presentational
aspect ratio (typically, but not necessarily, a portrait view);

(e) Wraps are designed for, although not necessarily
limited to, mobile. On mobile devices having touch sensitive
screens, the cards of wraps are navigated by swipe-brows-
ing. Wraps thus mimic the way people already use their
smartphones and other mobile devices such as tablets. Every
swipe reveals a new card with a “bite-size” message and/or
content.

As the cards are sequentially swiped during consumption,
the story-telling narrative of the wrap unfolds. In addition,
the user experience in viewing a given wrap is almost always
the same, regardless of the type of viewing device, since
each card is immutable and maintains the defined aspect at
runtime.

Wraps are authored using a template-based authoring tool
that requires little to no technical expertise. Wraps can,
therefore, be simply and inexpensively created, allowing
online retailers and others to promote and deliver their
brand, products and/or interactive services through the web
with an ease previously not possible. Up to now, developing
apps or web sites typically required a high degree of
software sophistication, significant cost, and took months or
weeks to create. Now with wrap, businesses and other
content providers can inexpensively create, with little soft-
ware expertise, interactive wrap packages in hours or min-
utes.

Another advantage of wraps is that they do not require a
dedicated infrastructure for distribution and viewing. By
using wrap identifiers, such as URLs, wraps can be distrib-
uted to a specific individual or widely to many either by
including the wrap identifiers in messages (e.g., emails,
texts, etc.), by posting in social media feeds (Facebook,
Twitter, etc.), and/or embedding in online advertisements,
etc. This attribute, meaning the ability to easily share and
distribute wraps over already pervasive communication
channels, is likely to increase the possibility of (i) wraps in
general becoming ubiquitous in the mobile economy and (ii)
individual wraps going “viral”.

Consumers now spend vast amounts of their time and
consciousness on their mobile phones and tablets. As a
result, the ability to easily distribute wraps to mobile devices
helps brands intimately deliver elegant, user experiences,
precisely where it matters the most. Wraps thus have the
ability to transform mobile devices into powerful business
tools. By delivering wraps to mobile devices, it helps brands
sell more and build recognition, relationships and loyalty
among customers.

In most situations, all that is needed to view a wrap is a
browser. When a wrap is requested for viewing, a runtime



US 9,460,228 B2

7

viewer is provided along with a wrap descriptor. On the
consuming device, the runtime viewer is arranged to de-
serialize the cards of the wrap descriptor and to generate a
runtime instance of the wrap. In other situations, the runtime
viewer may already be included in a native application
residing on the consuming device.

Wraps are thus a groundbreaking, mobile-first, storytell-
ing and e-commerce platform. By making it simple, inex-
pensive and easy to (i) author narrative wraps with interac-
tive functionality and (ii) to distribute wraps like messages,
wraps have the unique ability to:

(a) “democratize” the web by providing a powerful, low
barrier, low cost alternative to apps and web sites;

(b) unlock the vast story-telling potential of the Internet,
and

(c) drive e-commerce by building customer relationships
and increasing web conversion rates via the interactive
functionality provided in wraps.

Wraps thus solve many of the problems and limitations
associated with the existing methods for distributing content
and conducting e-commerce, such as PDF files, web sites,
dedicated apps, and the like. With all these benefits, wraps
have the potential of becoming ubiquitous, ushering in a new
paradigm referred to herein as the “Narrative Web”.

A wrap descriptor is composed of a set of card descriptors,
each defining a structure, layout and content of an associated
card. The wrap descriptor may also include various wrap
level components, attributes, behavior declarations and/or
metadata.

Wrap and/or card descriptors will often separate content
from their presentation. In other words, descriptors with
content of any appreciable size will typically reference these
asset(s), as opposed to incorporating them into the descriptor
itself. With this approach, the runtime viewer is responsible
for obtaining the external assets at runtime. Wraps are thus
“lightweight”, meaning they are easier to download and
distribute over mobile and cellular networks, which tend to
be relatively low bandwidth.

Each card descriptor also commonly includes component
descriptor(s) identifying the component(s) in the card and
any behaviors or other attributes associated with such com-
ponent(s). Behaviors are often declared rather than being
explicitly defined within the descriptors. Thus, the runtime
viewer is responsible for associating the behaviors declared
in the descriptor with their associated components in the
runtime instance. In other embodiments, card behaviors can
be authored inline or otherwise associated with the cards.

During consumption of a wrap, the runtime viewer on the
consuming device initially generates an object graph from
the wrap descriptor and then subsequently generates a
Document Object Model (“DOM”) from the object graph.
The runtime viewer then cooperates with the browser on the
device to generate a runtime instance of the wrap based on
the DOM. This two-step approach differs from how con-
ventional web pages are usually processed and displayed.
Typically, the browser on a consuming device will convert
Hyper Text Markup Language (HTML) defining a web page
into a DOM, which is then used by the browser to directly
display the web page. There is no intermediate transforma-
tion step of converting a “raw” wrap descriptor into an
object graph prior to the browser displaying content based
on a DOM.

In addition, the runtime viewer creates a card list in the
sequence order(s) from the wrap descriptor and provides
navigation tools that operate in cooperation with the browser
to facilitate transitioning between cards during consumption.
In non-exclusive embodiments, the order of the cards is

5

10

15

20

25

30

35

40

45

50

55

60

8

implicit in the descriptor structure. Since the navigation
functionality is provided by the runtime viewer, the cards
themselves do not have to include navigational constructs.
That is, there is no need to provide explicit linking or
navigation components in the cards to facilitate normal
navigation between adjacent cards in the wrap, which helps
simplify card design. Since normal navigation is handled by
the runtime viewer in cooperation with the browser, the
cards only require navigational constructs when the author
desires to override the standard wrap navigational features.
This allows wrap authors to concentrate on creating the
desired content and visual appearance of their wraps, with-
out needing to worry about the platform dependent format-
ting or navigation requirements. In other embodiments,
however, cards may include navigational constructs that
operate either in place of or in cooperation with the navi-
gation tools provided by the runtime viewer.

The navigation tools that are actually used for any par-
ticular wrap instance can be device and/or platform depen-
dent. For example, swipe navigation is preferably facilitated
when the consuming device has a touch sensitive screen, as
is popular in most mobile computing devices such as smart-
phones and tablet computers. Selectable GUI navigation
buttons (such as arrows, buttons, text-based swipe direc-
tions, etc.) may also be displayed on the screen to facilitate
navigation between cards. In addition, non-touch screen
based navigation may be facilitated when the consuming
device has as a selection device (e.g., a mouse) and/or a
keyboard or keypad where various keys (e.g., right, left, up
and down arrow keys, etc.) may be used to navigate between
cards.

In a non-exclusive embodiment, wrap packages are a
mobile-first marketing and commerce platform that ideally
provides a beautiful world of storytelling in bite-size
moments that get and hold attention. In other embodiments,
wrap packages can be used and distributed to other plat-
forms, such a desktop computers or Smart. TVs for example.
Wrap packages, although highly suitable for mobile, are not
limited only to mobile devices.

Wrap packages takes content combined with mobile app
and website functionality and makes them into an elegant
card-based narrative that is delivered in the browser as a
sharable and savable message. Wrap packages thus provides
an app-like user experience that is delivered as a live,
interactive message from a cloud-based platform, using for
example, the Software as a Service (SaaS) model.

The uniqueness of wrap packages creates opportunities
for business and other organizations alike to innovate and
improve marketing efforts, customer support, and user expe-
riences in ways previously not possible, because an enabling
interface and platform did not exist. Wrap packages can thus
potentially define the next generation interactive web para-
digm, particularly for mobile, although for desktop and other
types of devices as well.

By authoring wrap packages, businesses and other orga-
nizations can simply and cheaply create, distribute, and
manage storytelling mobile web user experiences, app like
functionality, all in the context of wrap packages delivered
directly to consumers. Where businesses used to have to
build destinations (websites) or use monolithic systems
(apps), they can now provide consumers, particularly mobile
device users, with a user experience that delivers the content
they want combined with a complementary palette of func-
tions and/or e-commerce related services.

Wrap packages are also platform and device independent.
Wraps do not have to be written for any specific platform,
such as i0OS or Android, or for any specific device or class



US 9,460,228 B2

9

of devices (e.g. smart phones, tablets, desktops, etc.). On the
contrary, a wrap package need be authored once and it will
run on almost any device, regardless of the operating system
or the type. This ubiquity, along with the ability to easily
distribute wrap packages similar to messages, is a powerful
construct that potentially can make the use of wrap packages
near universal.

Wrap packages thus solves a number of current problem
with the mobile web. Unlike web sites, wrap packages are
easy to consume on mobile devices and offer the opportunity
to create compelling narratives and user experiences. In
addition, the ability to incorporate app-like functionality into
wraps provides a multi-function app-like experience, with-
out having to be in an app, download an app, or open several
apps.

Awrap is a portable container of multimedia content, such
as text, images, photos, audio, video and the like, and
interactive services designed for ease of delivery, exchange,
and consumption. It is comprised of a collection of cards,
which, from an end-user/consumer perspective, are atomic
units of the aforementioned multimedia content and inter-
active services.

The cards in a wrap have an explicit sequence so that,
when taken as a whole, they are ideal for, but not necessarily
limited to, creating a narrative story as the cards are browsed
in the defined sequence. The multimedia content and/or
interactive services contained by any given card can be
determined entirely in advance or as late as the moment the
wrap is consumed by the end-user.

Cards have a visual representation intended to evoke
similarities to their physical counterparts. They have a fixed
portrait aspect ratio that makes them ideally suited to current
mobile computing devices as well as easy to scale up to and
arrange to fit other display form factors, such as provided on
laptop and desktop computers as well as smart TVs. The
physical card metaphor can also extend to the interactive
behavior of cards in a wrap, as the user can use gestures that
evoke the “flipping” of cards in a deck or bound booklet to
navigate between them.

Cards, however, however can differ from their physical
counter-parts in ways that provide for unique presentations
of content or the aforementioned interactive services. For
example, a gallery card provides the ability to present an
expanded amount of content in a vertically stacked orien-
tation such that the overall length (i.e., the number of cards
in a horizontal sequence) of the wrap is not affected by the
amount of content in the wrap. This aids in navigation since
the user can flip to the previous or next card regardless of
their current position in the gallery.

The app-like functionality and interactive features imple-
mented within cards include, but are not limited to, for
example the ability to open hyperlinks to additional content
on the web, such as maps or a shopping cart, which can be
presented in a modal overlay called a cul-de-sac. The
cul-de-sac allows for interaction with a traditional flow of
web content without losing a viewer’s position within the
wrap. When the interaction is complete, the cul-de-sac is
dismissed, returning the viewer to the original card in which
the cul-de-sac was initiated. Other services may use input
from the user or a remote source to dynamically generate the
content on a card. These are just a few illustrative examples
of the app-like functionality and interactivity that can be
built into the cards of wrap packages.

The wrap package data structure definition, or schema,
contains a unique identifier and descriptive metadata for the
wrap and contains a card package for each card in the wrap.
Similar to the wrap package, the card package is an abstract,

15

20

25

35

40

45

55

10

platform-independent data structure representing the con-
tents of a card, which is a composition of components
representing internal atomic units of content such as text or
an image or other nested containers of components. Com-
ponents may also represent content that is dynamically
generated at the time of consumption, for example, by
fetching content from the Internet or by processing input
from the user.

Cards are thus like containers for holding and distributing
media content, such as text, images, photos, audio, video and
the like. In addition, cards may also contain or hold execut-
able objects that provide or enable real-time features, such
as application functionality (L.e., the ability to schedule
appointments, engage in online chats or conversations) and
support e-commerce related services (i.e., the ability to
purchase goods and/or services). Such media content and
executable objects are sometimes referred to herein as card
“assets.” Cards are also consumable anywhere, meaning
they have the ability to be resolved and displayed on just
about any type of device (mobile phones, laptops, tablets,
wearable computing devices such as smart watches, desktop
computers, smart TVs, etc.), regardless of the platform (e.g.,
i0S, Android, Microsoft, etc.). In addition, cards are a
navigation metaphor. Each card can be authored to group
related information that can be easily consumed within a
user interface experience by swipe (or other simple gesture)
navigation from card-to-card. Wrap packages thus represent
a holistic, book like, narrative approach to presenting infor-
mation and providing application and/or e-commerce related
services to users and consumers, particularly those using
mobile devices, such as smart phones and tablet computers.

In addition, each card in a wrap has defined content that
is displayed in a predefined layout. In general, the cards in
a wrap have the same size and aspect ratio. The aspect ratio
is preferably device independent and is preferably main-
tained regardless of device orientation and/or or display
window size.

The cards of the wrap packages are ideally authored in
one or more linear sequences so that a book-like narrative
unfolds, not only through the cards themselves, but also by
the transition between the cards, as they are sequentially
browsed. In addition, the wrap packages are portable objects
that may exist within a social data feed or within a custom
application. Wrap packages are also readily distributed,
similar to electronic messages, through e-mail, messaging,
social-media, or via a variety of other electronic communi-
cation platforms. As a result, wrap packages are consumable,
sharable and savable objects. As the cards are browsed in the
one or more linear sequences during consumption, the user
experiences the unfolding of the authored narrative, includ-
ing the defined media content interwoven with the comple-
mentary application functionality and/or e-commerce
related services. As a result, the entire user experience
including any application functionality and/or e-commerce
related services is substantially contained within the context
of the wrap package itself, often (but not necessarily)
without the need to navigate to other sites.

Referring to FIG. 1, a diagram of a non-exclusive embodi-
ment of a wrap package 10 viewable on a computing device
12 is illustrated. The wrap package 10 includes a plurality of
cards 14 that are threaded together an as to enable browsing
by swiping in one or more linear sequences. Any of the cards
14 may optionally include various types of media, such as
text, images or photos, audio, video, a live or streaming feed
of' media, 3-D objects, or content from other wrap packages
(not illustrated). Any of the cards 14 may also optionally
provide application functionality, such as the ability to



US 9,460,228 B2

11

receive input data or display dynamically generated data, a
calendar for scheduling or booking appointments or making
reservations for goods and/or services, location/GPS, etc. In
addition, any of the cards 14 may optionally provide or
support e-commerce services, such as the ability to browse
products in a catalog, communicate with an online sales
representative, and/or purchase product(s).

By way of example, in the schematically illustrated wrap
package 10, card 14, includes text, card 14, presents a
gallery, card 14, includes images or pictures, card 14,
includes a video, card 14, includes e-commerce related
service(s), card 14 includes a calendar function for sched-
uling appointments and/or booking reservations, card 14,
includes a user approval function, 14, includes a data entry
function, card 14, includes location or GPS services, etc.

On computing devices with touch sensitive screens, the
cards 14 of wrap packages 10 can be navigated linearly by
swiping or by using other suitable interfaces, such as a stylus
or pen. In devices without a touch sensitive screen, alterna-
tive user interfaces are provided to facilitate transition (e.g.,
flipping) from one card to the next. In the context of the
present application, the terms “swipe-browsing” or “swip-
ing” is intended to mean the navigation from one card to an
adjacent next card. With devices with touch sensitive
screens, swipe browsing is typically implemented by the
sliding of a finger or other input device across the display.
With devices without touch-sensitive screens, other naviga-
tion tools such as a mouse, keyboard or remote control, can
be used for swipe browsing. When a swipe is performed, the
content of the next card in the sequence is displayed. For
example, by swiping either right to left or vice versa, the
next card, depending on the swipe direction, in the horizon-
tal sequence is displayed. Similarly, by swiping up and/or
down, the next card in either the up or down sequence is
displayed. Thus, the user experience when consuming a
wrap package is the wrap package itself (as opposed to a
remote web site for example), viewable via a swipe-able
interface.

Additionally, some cards may also include one or more
embedded link(s) that, when selected, enable navigation to
either a non-adjacent card not in linear sequence or to
another wrap package, a web page or some other location
entirely outside of the wrap package.

It should be noted that the particular layout of cards 14 in
the wrap package 10 illustrated in FIG. 1 is merely illustra-
tive. Both the number of rows and/or columns, and the
number of sequential cards 14 within any given row or
column, may vary widely as appropriate to deliver the
desired user experience, narrative, content, functionality and
services of the wrap package 10.

With gallery cards, such as card 14 of FIG. 1, swiping
allows for the scrolling through of the contents of a card 14,
which are typically too voluminous to be displayed within
the size of a fixed screen display, such as that provided on
a mobile phone. In an illustrative example, a particular wrap
package 10 may include a plurality of cards organized in a
horizontal sequence. By swiping right to left or vice versa,
the next card 14 or the previous card 14 in the horizontal
sequence is displayed. In the vertical direction, however, one
or more selected cards 14, may be configured in the gallery
format, allowing the viewer to scroll up or down by swiping
through media content of the gallery. In an illustrative but
non-exclusive example, a wrap package 10 authored and
distributed by a car rental business may include a horizontal
sequence of cards 10, each dedicated to a category of
information pertinent to a traveler (i.e., cards dedicated to
local hotels, restaurants, local tourist attractions respec-

10

15

20

25

30

35

40

45

50

55

60

12

tively). By swiping up or down for a given card, relevant
material within each category is displayed in a gallery
format. For instance by swiping up or down the hotel card
(not illustrated), a gallery of a number of local hotels is
displayed. In variations of the gallery card format, the
behavior invoked by an up or down swipe may differ. For
example, swiping up or down my result in a continuous
“rolling” of the content of the gallery card. In other embodi-
ments, an up or down swipe may result in a “snap” action
with the next item of content appearing after the snap, for
example, as illustrated as cards 14Y and 147 in FIG. 1.

The wrap package 10 is identified, as described in more
detail below, through the use of a unique identifier (wrap ID
42) assigned to the package 10. By way of example, the
wrap 1D 42 may take the form of a Uniform Resource
Identifier (URL). As such, the wrap ID may thus be provided
as a link, which can readily be used to effectively send or
retrieve the wrap package. That is, the wrap package may
effectively be “sent” to a potential viewer as a link using any
of the wide variety of mechanism that can currently—or in
the future—be used to send a link or convey the URL. By
way of example, this may include e-mail messages, text
messages, SMS messages, via a Twitter tweet, as a post on
social media such as Facebook, etc., discussion forums,
walls or the like, as a link embedded in a document, an
image, or a web page or any other media type, in a blog or
microblog (e.g. Tumblr), or any other messaging or elec-
tronic content distribution mechanism or communication
platform currently known or developed in the future.

Wrap packages are therefore significantly different and
more powerful than web sites. For example with wrap
packages, they can be consumed “on the spot” where it is
located (i.e., when delivered to a mobile device for
example). In contrast with the selection of a banner ad
appearing within a web site, where the viewer is taken to a
new web page that is not (a) necessarily designed for mobile
devices and (b) is self navigating, making it very difficult for
a narrative to be conveyed. As a result, the user experience,
particularly on mobile devices, may be very poor. Hence, the
friction of providing a compelling user experience with wrap
packages is far less than with web site.

The cards 14 of a wrap 10 can be displayed on the screen
of virtually any type of computing device. It should be
appreciated that the card metaphor is particularly well suited
for use on mobile devices such as smart phones, tablet
computers, etc., which makes the format particularly pow-
erful for authors interested in developing content tailored for
mobile devices. By delivering wrap packages 10 to mobile
devices, users and potential customers can be won over at
their point of intimacy, where they spend their time and
consciousness. Wrap packages thus allow authors, mer-
chants and other content providers to create compelling
narratives and provide ongoing application functionality
and/or e-commerce support directly delivered anytime and
anywhere to users, transforming their mobile devices into a
powerful business tool that enhances mobile engagement
and relationships. As a result, higher customer satisfaction,
better brand engagement, and a higher conversion (i.e.,
click-through rates) and repeat e-commerce related activity
compared to other forms of after sale promotions and
merchandising will likely result.

Referring to FIG. 2, a diagram depicting the design,
functionality and data integration capabilities of a represen-
tative card 14 in a wrap package 10 is shown.

By using card templates, authoring tools and media col-
laboration tools, beautiful, content-rich, cards 14 may be
created either by automation or by individuals with even



US 9,460,228 B2

13

minimal design skills and experience. As such, the author,
either a person or an automated process, has the ability to
easily create beautiful content-rich cards 14 that can selec-
tively include text, images, photos, and other media similar
to PDF files, but optionally, with the added benefit of
additional application functionality and/or e-commerce
related services, either embedded in the same card 14, or
other cards 14, in the wrap package 10. In the automated
authoring embodiments, the content of a card 14 can be
populated by a data processing system that automatically
uploads predefined content into various defined fields of a
card template.

By authoring (i) the horizontal and/or vertical sequence
order for swipe-browsing the cards 14, (ii) the media content
in each card 14, (iii) application functionality and/or (iv) the
e-commerce services for each card 14, it is possible to author
wrap packages 10 that are content-rich, highly interactive,
and that define a palette of services, functions and experi-
ences related to the wrap package 10, all within the context
of a story book-like narrative that unfolds as the cards 14 are
browsed in their sequence order(s).

In addition, the use of component libraries and the author-
ing tools allow for the authoring of cards 14 with a diverse,
easy 1o use, reusable, set of component modules that provide
a wide variety of application functions and e-commerce
services. Such application functions include, but are not
limited to, for example, calendar functions, scheduling of an
appointment functions, reserving or booking goods and/or
services, such as a car rental, hotel room, or table at a
restaurant, map or GPS related functions, support for online
conversations, streaming live video or other media feeds,
etc. In addition, e-commerce related services include dis-
playing product and/or service offerings, displaying user
account information, engaging a sales representative in an
online chat session, and enabling the purchase of goods
and/or services, etc. These card services or “plugins” are all
part of an ecosystem supported by a Wrap run-time engine
viewer (described in more detail below), which allows the
various plug-in services to all communicate and inter-oper-
ate together. For example, a calendar plugin could be
configured to communicate with a reservation booking data-
base plugin, which could communicate with a chat plugin.
The communication among the various plug-in services is
accomplished through a common set of APIs. As a result, the
interactivity, functionality and usefulness of wrap packages
10 are significantly enhanced by such an ecosystem of
connected plug-in services.

Finally, the integration capabilities of cards 14 enable the
bi-directional flow of data from users browsing a wrap
package 10 to other cards 14 in the same wrap package 10,
to another wrap package 10, or a remote data processing
system. For example, a card 14 can be integrated with the
back end software system for a large online retailer, which
will automatically populate the content of a card 14 with
product images, user account information, prior purchase
information, and a host of other user-related information.
Alternatively, a card 14 can be used to capture data input
from a user and provide it to a retailer’s back end e-com-
merce software system. For example, a card 14 may display
a one-click “Buy Now” function for a displayed item. When
the Buy Now function is selected, previously saved user
account information is automatically delivered to the back
end software system of the online merchant, which then
processes the information to complete the transaction.

The data entered by the user and/or the data presented via
a card 14 of a wrap package 10 may thus be integrated with
the back-end database, cloud computing services, web sites,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

etc., regardless if managed by an author and/or distributor of
the wrap package or by a third party. The data processing for
the purchase of goods and/or services, appointments, and/or
other application functionality and e-commerce related ser-
vices may, therefore, be performed either within the wrap
packages 10 itself or integrated with a remote data process-
ing resource.

The data integration capabilities of cards 14 can also be
shared among other cards 14 in the same wrap package 10,
with other wrap packages, with web sites, or just about any
other data processing system.

Referring to FIG. 3, a diagram summarizing the content
and distribution model for wrap packages 10 is shown. As
illustrated in the left most column, the content that may be
included in the various cards 14 of a wrap package 10 may
include photos and/or images, audio, video, text, 3-D
objects, various types of streaming media (e.g., audio, video,
audiovisual, data, biometric information, tickers, sensor
outputs, etc.), other data types, application functionality
and/or e-commerce services. This content may further be
combined with content mixed from other wrap packages 10
as well as live or streaming content. The cards 14 of the wrap
package 10 may be further modified based on analytics,
intelligent personalization based on the demographics of
targeted users or viewers, as well as the integration of either
data input or data output to/from with other cards 14, other
wrap packages 10, or remote data processing systems and
processes, as explained above.

All of the above are then combined during the authoring
process into a group of digital objects, defined herein as the
wrap package 10. In non-exclusive embodiments where
URLSs are used as identifiers (i.e., wrap 1D 42), the wrap
packages are “light-weight”, meaning content of the wrap
package 10 is delivered over a network to a user only when
the wrap 1D 42 for the wrap package 10 and/or each card 14
is identified. As a result, the media content, application
functionality, and/or e-commerce related services is deliv-
ered only when needed. Also, by authoring the cards 14
using a widely supported language such as HTML, the cards
14 of wrap packages 10 can be written once and are
viewable on a display associated with almost any computing
device running a browser. Accordingly, unlike applications,
multiple version of a wrap package 10 need not be authored
for multiple platforms.

The wrap package 10 is thus essentially a cloud based
portable object that may be readily distributed in a number
of ways. In non-exclusive examples, wrap packages 10 may
be distributed by email, SMS messaging, ad networks,
Twitter, merchant/retailer web sites, photo and/or video
sharing web sites that support messaging, social networking
web site such as Facebook, through the down-loading of
applications from aggregators such as the Apple App Store
or Google Play, or just about any means for electronically
distributing data over a network, currently known or devel-
oped in the future.

Authoring and Distribution of Wrap Packages

Referring to FIG. 4, a block diagram of a non-exclusive
system for authoring, storing, distributing and consuming
wrap packages 10 is illustrated. The system 20 includes a
server node 22, a plurality of computing devices 12, includ-
ing but not limited to a desktop computer 12A, a laptop
computer 12B, a tablet computer 12C, a mobile “smart”
phone 12D, a wearable computing device, such as a smart
watch 12E or smart glasses 12F and “smart” TVs 12G. The
server node 22 and the computing devices 12A-12G com-



US 9,460,228 B2

15

municate with one another over a network 24. In various
embodiments, the network 24 may be the Internet, an
intranet, a wired or wireless network, a Wi-Fi network, a
cellular network, other types of communication networks, or
any combination thereof.

The server node 22 includes a “wrap” engine 26, which
defines a web application framework 28, a storage device 30
and cache 32, each for storing wrap packages 10 and other
data. The server node 22 also may include a suite of tools,
such as an authoring tool, an analytic engine tool, a media
collaboration tool and a data transformation tool, for author-
ing wrap packages 10. Suitable authoring tools are describe,
for example, in U.S. patent application Ser. Nos. 14/740,533
and 14/740,539, each filed Jun. 16, 2015, both of which are
incorporated herein by reference.

The web application framework 28 is a software platform
designed to support the manual and/or automated authoring
of wrap packages 10. The framework 28 is designed to
alleviate the overhead associated with common activities
performed during the authoring of many wrap packages 10.
For example, the framework 28 may include one or more
libraries to help with the authoring of common tasks, and
modularizes and promotes the reuse of code designed to
perform specific tasks, such as implementing application
functionality and/or supporting e-commerce. In various
embodiments, the web application framework 28 may be
implemented using, but is not limited to, Ruby, Rails,
JavaScript, Angular-JS, and/or any other language or frame-
work currently known or developed and used in the future.

In a non-exclusive embodiment, the web application
framework 28 of the wrap engine 26 also performs content
management as a way of organizing, categorizing, and
structuring the media and other content resources such as
text, images, documents, audio files, video files and modu-
larized software code so that the content of wrap packages
10 can be stored, published, reused and edited with ease and
flexibility. The content management function is also used to
collect, manage, and publish content, storing it either as
components or whole documents, while maintaining
dynamic links between the components and/or cards 14 of a
wrap package 10.

In yet another non-exclusive embodiment, the web appli-
cation framework 28 of the wrap engine 26 is structured
around multiple tiers, including but not limited to a client
tier, an application tier and a database tier. The client tier
refers to the browser enabled communication devices 12 that
execute and display cards 14 of wrap packages 10, as well
as web pages written in HTML or another mark-up lan-
guage. The database tier, which is maintained in storage 30,
contains the one or more libraries of user and/or platform
provided media content, software components, modules, etc.
used for the authoring of wrap packages 10. The application
tier contains the software that runs on the server node 22 and
that retrieves and serves the appropriate wrap package 10
from storage 30 and/or cache 32 when requested by a
computing device 12.

Since wrap packages 10 are essentially data objects, they
can be both cached and delivered over a Content Delivery
Network Interconnection (CDN), both of which can be
effectively used to deliver wrap packages 10 with minimal
delay. For example, commonly requested wrap packages 10
may be cached in the cache 32, which provides faster access
and delivery times than storage 30. Also other caching
techniques, such as pre-caching, may be used with popular
wrap packages 10, to speed up delivery times. Since the
amount of storage in the cache is typically limited, cached
wrap packages 10 and other data may be periodically

10

15

20

25

30

35

40

45

50

55

60

65

16

replaced by any known replacement algorithm, such as
first-in, first-out or least recently used for example.

During the composing of a wrap package 10, one or more
author(s) 34 may access the server node 22 over a network
36, which may be different or the same as network 24. The
author(s) 36 interact with the wrap engine 26, including the
web application framework 28, and the above-mentioned
suite of tools for the creation, editing, optimization and
storing of wrap packages 10. In yet other embodiments, the
one or more author(s) 34 can also access third party content
38 for inclusion into a wrap package 10. As previously
noted, wrap packages 10 can be authored manually by one
or more individuals or electronically in an automated pro-
cess.

For more details on the authoring of cards 14 of wrap
packages, see U.S. provisional applications 62/062,056 and
62/062,061, both entitled “Wrapped Packages of Cards for
Conveying a Narrative With Media Content, Providing
Application Functionality, and Engaging Users in E-com-
merce”, both filed Oct. 9, 2014, and both incorporated by
reference herein for all purposes.

Once the authoring of a wrap package 10 is complete, it
is maintained in storage 30 and possibly cached in cache 32.
In response to receiving an identifier, the wrap engine 26
fetches the corresponding wrap package 10 from storage 30
or the cache 32 and serves it to the requesting computing
device 12 for consumption in a format customized for the
viewing device.

It should be noted that the authoring and distribution
diagram of FIG. 4 is merely representative and should not be
construed as limiting. For example, multiple server nodes 22
for the authoring and/or distribution of wrap packages 10
may be provided at the same or different locations. In
addition, multiple instantiations of a given wrap package 10
can be stored at multiple server nodes 22, typically located
at different geographic locations. With this arrangement, the
server node 22 that is most capable of quickly delivering a
requested wrap package 10, sometimes referred to as the
“publication server”, is the node 22 that will deliver the wrap
package to the requesting device 12.

The Wrap Package

As diagrammatically illustrated in FIG. 5A, a wrap pack-
age 10 includes a set of one or more cards 14. Each card 14
may contain one or more components 16 that serve as
containers for content objects 17. The content objects 17,
together with the behaviors associated with the cards and
components 16, define the content and functionality of the
cards. The content objects 17 may be simple or complex.
Simple content objects 17 include standard web-based con-
tent types such as text, images, video clips, etc. More
complex content objects 17 may include objects having
more complicated structures and/or behaviors, as will be
described in more detail below.

The structure of the wrap 10, including the structure,
layout and components 16 of each of its cards 14 is prefer-
ably defined by a wrap descriptor 40. The actual structure of
the descriptor 40 may vary widely and a few different
suitable descriptor structures are described in more detail
below with respect to FIGS. 6-6F. In general, each descriptor
40 has a number of descriptive elements that together define
the structure, layout, components, behaviors and content of
the wrap.

Some content objects 17, such as text, may be directly
included (in-line) in the component 16. Other content
objects 17, such as images or video clips, may be included



US 9,460,228 B2

17
by reference, e.g., through simple URL references, or in-line
through an encoding method such as MIME (Multi-Purpose
Internet Mail Extensions). Complex content objects 17 may
be specified in-line or by reference and may (a) contain other
components 16 or content objects 17 and/or (b) specify
abstract behaviors.

Referenced content objects 17 stored outside of the wrap
descriptor 40 are sometimes referred to herein as assets 65.
The referenced assets 65 may take the form of almost any
type of content that can be included in the wrap package.
This can include text, photos, images, 3-D objects, audio,
video, and other media content or streams and/or a variety
of executable objects, services and/or other functionality.
Sometimes an asset may take the form of a stream and the
wrap descriptor 40 is arranged to identify the source of the
feed. By way of example, the stream could be a live audio
or video stream, a data feed such as a stock ticker, sensor
outputs, biometric information, etc.

In certain circumstances, some or all of the assets 65
associated with a wrap 10 may be stored and accessible from
a dedicated wrap server. However, that is not a requirement.
Rather, an asset can be retrieved from any location that
would be accessible by the consuming device (e.g., through
the Internet, an intranet or private network or any other
reliable means), and there is no need for the various assets
65 to be located in a single asset store, although that may be
desirable in many circumstances.

The wrap package 10 has an associated identifier, the
wrap 1D 42, that uniquely identifies the wrap 10. The wrap
ID is preferably a globally unique identifier (GUID). In
some embodiments, the wrap ID 42 takes the form of a URL,
or any other identifier that can be converted to, or extracted
from, a URL, which facilitates access to the wrap 10 over the
Internet using conventional mechanisms. An example of a
conversion of the wrap ID to a URL might be adding a
domain as a prefix to the wrap ID to form a URL (e.g.,
www.wrap.com/wrap/<wraplD>).

FIG. 5A also diagrammatically illustrates selected com-
ponents associated with defining and rendering a represen-
tative wrap package 10. The illustrated components may
optionally include one or more covers 15, a wrap descriptor
40, a wrap runtime viewer 50 and various referenced exter-
nal assets 65. As previously noted, the wrap descriptor 40
defines the structure, layout and components 16 of each of
the cards 14 within the wrap package 10. The wrap descrip-
tor 40 typically includes the wrap ID 42 and a set, deck or
array of card definitions or card descriptors 46, each defining
the structure of an associated card (as described with respect
to FIG. 6 for example). The wrap descriptor 40 may also
include other information of interest such as a wrap name/
title 44 and optionally one or more cover identifier(s) 43
and/or other information or metadata 45 about the wrap
package 10.

To facilitate rendering the wrap package 10 on various
different devices, the wrap is preferably stored in a data
format that separates the data from the presentation. At the
time of this writing, JavaScript Object Notation (JSON) is a
popular, light-weight, data-interchange format that can be
used to describe the wrap package 10. Thus, by way of
example, the definition of the wrap package 10 may be
stored as a JSON data object at the server(s) 22. That is, the
descriptor 40 may take the form of a JSON object. In other
embodiments, a BSON (Binary JSON) data object may be
used. Although the use of JSON or BSON data objects is
described, it should be appreciated that in other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

18

ments, the wrap package 10 may be stored in a variety of
other suitable formats, whether now existing or later devel-
oped.

The optional cover 15 of the wrap package 10 is typically
a graphic object that contains an embedded hyperlink to the
wrap (e.g., the URL used as wrap 1D 42) and can be placed
in any suitable type of electronic media to represent the wrap
package 10. Thus, a wrap 10 may be accessed by clicking on
or otherwise selecting the cover 15 or by clicking on, or
otherwise selecting any other type of link containing the
wrap 1D 42. As such, in order to “distribute” a wrap package
10, either the cover 15 or a link can be distributed to
potential viewers of the wrap package 10 using any available
tool. For example, the wrap package 10 may be distributed
by: (i) placing the cover 15 or a link on a webpage, in an ad
or in any other location that can be accessed by a potential
viewer via a browser; (ii) by posting the cover 15 or a link
on a blog, a microblog, a forum, a wall etc. or any social
media distribution mechanism such as Facebook, Twitter,
etc.; (ii1) by including the cover 15 or a link in a message
such as e-mail, SMS message, a Twitter Tweet, text mes-
sages, etc.; or (iv) using any other available distribution
mechanism or platform, either known now or developed in
the future. Therefore, in many circumstances, it is desirable
to create a cover 15 that is attractive and entices viewers to
access the associated wrap package 15. In some instances,
the cover 15 may take the form of an image from the wrap
package 10 itself (e.g., the first card), however, that is not a
requirement.

The wrap package 10 is configured to be rendered on a
consuming device 12 in conjunction with a wrap runtime
viewer 50, which is also sometimes referred to as the wrap
run-time engine or simply the viewer. The runtime viewer 50
provides a set of tools and functionalities that are helpful for
viewing and/or interacting with the wrap. In some circum-
stances, the viewer 50 will take the form of a dedicated,
platform specific, wrap viewer application (e.g., an applet or
app in the context of a mobile device), a plug-in (e.g. a
browser plug-in) or other mechanism installed on the view-
ing device that provides the necessary functionality. In other
circumstances the wrap viewer functionality may be incor-
porated into other types of applications. However, limiting
the rendering of wraps to devices which have preinstalled
wrap viewing applications/functionality would greatly
reduce their portability since users are not always motivated
to install such applications unless or until they see a com-
pelling need. Therefore, as will be explained in more detail
below, the delivery of a wrap packages 10 may optionally be
accompanied by a run-time viewer 50 that includes a set of
associated tools and functionalities suitable for use by a
conventional browser to generate and/or render the runtime
instance of the wrap based on the wrap descriptor 40 and to
facilitate user interaction with the wrap package 10. These
tools and functionality can be thought of, and are often
referred to herein as a wrap toolset that is part of the wrap
runtime viewer 50. By providing the wrap construction,
viewing and interaction toolset in a browser executable form
together with the wrap descriptor 40, the wrap package 10
can be consumed on a wide variety of different devices and
operating system platforms (e.g., i0S, Android, Microsoft,
etc.) without requiring the users to download and install a
device and/or platform specific viewer application. This is a
powerful construct for enhancing the portability and viral
distribution of wrap packages among a myriad of devices
and operating system platforms

In the embodiment illustrated in FIG. 5A, the viewer
toolset provided with the wrap viewer 50 includes naviga-



US 9,460,228 B2

19

tional tools 51, sharing tools 52, storing tool 53, various
e-commerce tools 54, presentation engine/tools 55, security
and access control tools 56, a rendering engine 57, and
application functionality tools 58. Of course, it should be
appreciated that not all of these tools are required in all
implementations and that in other implementations, a variety
of other tools and functionalities may be provided as well.
The navigational tools 51 facilitate navigation within the
wrap package 10. The sharing tools 52 provide mechanisms
by which a consumer of the wrap 10 may share the wrap
with others, e.g., by e-mail, by SMS message, via a social
media post, etc. Storing tool 53 allows a user to persistently
store the wrap and/or when applicable, the wrap state, either
locally or remotely. The e-commerce tools 54 may include
a variety of functionalities that can help facilitate a variety
of e-commerce tasks including purchasing, making reserva-
tions, etc. Application functionality tools 58 enable “app-
like” functionality within the wrap package 10, such as
conducting online chats, GPS functionality, etc. Presentation
engine 55 controls the presentation. In some embodiments,
the presentation engine 55 may be arranged to present the
wrap on the consuming device at a scale and in an aspect
ratio that is at least somewhat optimized for the device.

Security and access control tools 56 provide security and
access control functionality, which might include encryption
functionality and user authentication services. For example,
in some circumstances, the publisher of a wrap may want to
limit the circulation of the wrap to specific users or groups
of users. A few, nonexclusive examples of such circum-
stances include when the wrap is created for use as: (i) an
active receipt for a purchase as described in U.S. Provisional
Application Nos. 62/062,056 and 62/075,172 (both incor-
porated by reference herein for all purposes) and (ii) a ticket
for an event as described in U.S. Provisional Application No.
62/079,500; (also incorporated by referenced herein for all
purposes) (iii) an item customized for a customer such as a
travel itinerary; (iv) an employee manual as described in
U.S. Provisional Application No. 62/114,731 (also incorpo-
rated by reference herein for all purposes); etc. Encryption
services may be desirable to protect confidential informa-
tion. Of course, there are a very wide variety of other
circumstances where security and/or access control/permis-
sion functionality may be desired.

With certain embodiments, the viewer 50 may optionally
also include a rendering engine 57 arranged to create and/or
render a runtime instance of the wrap on a consuming device
12 based on the descriptor 40. In such embodiments, the
rendering engine is arrange to dynamically generate the
HTML (or other markup language) use by a browser or other
viewing mechanism on the device 12 to render the wrap at
runtime. In some implementations, the rendering engine 57
is arranged to create an object graph based on the descriptor
40 and a document object model (DOM) based on the object
graph. The browser or other suitable app or application may
then use the DOM to render the wrap package 10.

With yet other embodiments, the viewer 50 may also
optionally have any number of card behaviors definitions 60.
As will be described in more detail below, different cards can
be designed to exhibit a wide variety of different behaviors.
In order to simplify the card, and card template creation
processes, various desired behaviors can be defined sepa-
rately from the cards themselves. The behaviors are known
to or accessible by the wrap viewer 50 (e.g., desired behav-
iors may be defined through behavior definitions 60 or may
be accessible as behavior extensions 62 as seen in FIG. 5B).
Thus, the descriptor for any particular card or component
may simply declare the desired behavior and the viewer 50

10

15

20

25

30

35

40

45

50

55

60

65

20

will know how to impart such behavior to the wrap/card/
component and/or how to obtain an extension that imparts
such behavior.

In FIG. 5A, the behavior definitions and the various tools
are illustrated as separate items to facilitate their description.
However, in practice, some of the illustrated tools are simply
sets of associated behaviors, and therefore, the illustrated
distinction between the behaviors and such tools is/are
largely for emphasis.

As discussed above, the wrap package 10 may be ren-
dered on a wide variety of different devices 12A through
12G. These devices may have a wide variety of different
screen sizes, capabilities, and viewing mechanisms. When a
particular device 12 requests a wrap package 10, a determi-
nation is effectively made as to whether a suitable wrap
runtime viewer is already present on the requesting device.
If not, a browser compatible runtime viewer 50 is provided
in addition to the wrap or wrap descriptor 40. The browser
compatible run-time viewer may be written in any format
that is appropriate for execution by a browser. By way of
example, JavaScript (JS) is a dynamic programming lan-
guage that is currently popular and supported by most
general purpose browsers and many other rendering mecha-
nisms. Thus, JavaScript works well for the browser com-
patible viewer since the same wrap viewer can be used for
a wide variety of different browsers. However, it should be
apparent that in other embodiments, the wrap viewer 50 may
be implemented using a wide variety of other now existing
or future developed frameworks and/or languages. For
example, the DOM rendering may be replaced with a React
framework or another suitable framework currently known
or developed in the future. When the wrap viewer is incor-
porated into a native application, it will sometimes be
desirable to write the viewer (or portions of the viewer) in
a format that executes more efficiently or is otherwise
preferred for execution on the underlying operating system,
etc.

A specific wrap is illustrated in FIGS. 7A-7M. The
illustrated wrap 310 is an informational wrap about a
particular product line—Hint® water. The wrap includes a
deck of nine cards—i.e., cards 311-319. Card 311 is the first
card. Cards 312-315 are informational cards that describe
the Hint® water flavored products as illustrated in FIGS.
7B-7E respectively. Card 316 is a gallery card that shows a
number of different available flavored water non-carbonated
products as illustrated FIGS. 7F-7H respectively. Card 317
is a second gallery card that shows a number of different
available carbonated flavored water products (Hint Fizz) as
illustrated in FIGS. 7I-7K respectively. Card 318 is an
e-commerce card that allows a user to order a monthly
subscription of Hint products as illustrated in FIG. 7L.. Card
319 is the last card and includes various tools that allow a
user to share the wrap and/or comment on the wrap on
various social media forums as illustrated in FIG. 7M.

The wrap 10 may be constructed in a variety of different
formats. As previously described, a descriptor 40 defining
the wrap may be constructed using JavaScript Object Nota-
tion—i.e., in the form of a JSON data object. By way of
example, a representative JSON descriptor that defines the
wrap 310 shown in FIGS. 7A-7M is provided in Appendix
1 of U.S. Provisional Patent Application No. 62/210,585,
which is incorporated herein by reference.

Defining Card Behavior

Different cards 14 within a wrap 10 can be designed to
exhibit a wide variety of different behaviors. To simplify the



US 9,460,228 B2

21

card authoring process, the card descriptor 46 within a wrap
10 can be arranged to declare the behavior of the card 14
without internally defining that behavior. Rather, in such
circumstances, the desired card 14 behaviors are defined
within the wrap viewer 50 as part of the behavior definitions
60 or through behavior extensions 62. With this arrange-
ment, a card template designer can define the behavior for
cards 14 authored using the template, or can define a set of
available behaviors from which a card author can choose. If
a set of behaviors are available to the card author, then the
authors selects the desired behavior from the available set.
In either case, the desired behavior is declared as part of the
card. With this arrangement, different cards 14 within a wrap
10 can exhibit different behaviors and such behavior remains
with the card even if the card is used in a different wrap. If
a new card behavior is desired, the new behavior can be
created and added to the behavior definitions 60. In this
manner, the newly defined behavior becomes available to
other template designers and/or card authors.

To illustrate the concept of defining card behaviors,
consider the gallery cards 316, 317 illustrated in FIGS.
7F-7K. Generally a gallery card is arranged to display a
number of items. The items are presented in a vertically
extending sequence that extends beyond the display screen
of the expected viewing device. Thus, to view the items in
the gallery, a user would vertically scroll through the array
of items. Typically (although not necessarily), the items in
the gallery all have substantially the same structure. By way
of example, in the embodiment illustrated in FIG. 7, card
316 is a gallery card as illustrated in FIGS. 7F to 7TH—which
are screen shots of a set of gallery item panes, with each
gallery item describing a different flavor of Hint® water—
specifically, pomegranate 321, blackberry 322 and blood
orange 323 respectively. As can be seen, each item has a
similar layout with an image 324 on the left being an image
of the fruit that flavors the water, and image 325 on the right
being an image of the relevant water bottle and a trigger 340
which identifies the product, indicates it cost, has a “Buy
Now” graphic 327 and provides a mechanism that can be
used to purchase the displayed item as will be discussed in
more detail below.

It can be imagined that the designer of a gallery card may
wish the card to be scrolled in a variety of different ways. By
way of example, one approach may be to conceptually
divide the gallery card 316 into a number of frames or
“pages” 316(a), 316(b), 316(c) that have the visual appear-
ance of being separate cards as seen in FIGS. 7F-7H. In such
an arrangement, it may be desirable to have the displayed
image snap to the next adjacent page when a scroll command
(e.g., a vertical swipe gesture) is received. In another
example, the items in the gallery may be relatively smaller
such that the displayed item does not take up the entire card
display area. In such a circumstance it may be desirable to
have the displayed image snap to the next adjacent item
when a scroll command is received. In still other circum-
stances, the card designer may prefer to provide free (con-
tinuous) scrolling. Of course, other types of scrolling behav-
ior could be provided a well. In a non-exclusive
embodiment, a key 338 may be included for providing a
visual indicator of the relative up/down position that is being
displayed relative to the overall number of views of the
gallery card.

As illustrated in FIG. 7F, the runtime viewer may option-
ally be arranged to display a graphical hint element 339 (e.g.
the “swipe” graphic) on the first pane of a gallery card to
help convey to the user that the card may be navigated
vertically to view additional gallery items. Of course, the

30

40

45

22

visual appearance, text (if any), size and/or display location
of the hint element 339 may be widely varied. Additionally,
the rules regarding when such hints are used may be widely
varied. For example, in some implementations the hint can
be provided on the first frame of a gallery card only the first
time that the gallery card is displayed. In another example,
the hint can be displayed each time the gallery card is
displayed.

The card descriptor 46 for the gallery card includes a
behavior declaration that identifies the desired behavior for
the card which can then be bound to the card at run-time by
the wrap viewer (e.g., browser based viewer, native viewer,
etc.). For example, this could take the form of a statement
such as:

“Behaviors™: [“vertical-snap-to-card”]

Further examples are shown in Appendix I of incorporated
U.S. Provisional Patent Application No. 62/210,585.

The developer of the wrap viewer 50 can define any
number of card behaviors that are supported by the viewer,
such as but not limited to the different scrolling techniques
in the example above. Third parties can provide extensions
that define still other behaviors (e.g., a scrolling behavior in
which a two finger swipe reacts differently than a one finger
swipe, etc.). The developer of a card template can define
which of the available behaviors are available for use with
the template (e.g., a subset, or all of the defined scrolling
behaviors). Wrap and card authors using the template can
then select which of the behaviors available to the template
they would like to associate with the card, and the chosen
behavior is declared as part of the card descriptor 46.

Although the specific example of scrolling behavior in a
gallery card has been given, it should be appreciated that
virtually any desired type of card behavior can be defined
and declared in a similar manner. It should be appreciated
that differences in card behavior may take a wide variety of
different forms. For example, different types of cards may
have different accompanying behaviors; the behavior of a
particular type of card may be different based on its position
within the wrap 10; and/or the animations associated with
transitions may vary with respect to card position.

Returning to the wrap 310 of FIGS. 7A-7M, several
different card behavior(s) can be implemented. For instance,
the first card in a sequence (e.g., card 311) may be arranged
to facilitate a transition to the second card (e.g., card 312) by
swiping to the left—but a swipe to the right may have no
effect. The transition may be animated, as for example, by an
animation that resembles flipping the first card in a manner
that resembles turning the page of a physical book. The final
card in the deck (e.g., card 319) may be arranged to facilitate
a transition back to the second to the last card (e.g. card 318)
by swiping to the right, whereas a swipe to the left may
cause an animation that starts looking like a page turn but
snaps back to indicate that the end of the wrap has been
reached. Intermediate cards may be arranged to facilitate
transitioning to the next page in response to a left swipe and
transitioning to the right in response to the preceding page
in response to a right swipe.

As previously suggested, the gallery cards 316, 317 may
also be responsive to vertical swipes to facilitate scrolling
through the gallery, whereas various other cards which do
not have associated galleries may not be responsive to
vertical swipes. In some embodiments, a left swipe from any
of the gallery card items or “pages” (e.g., 316(a), 316(b),
316(c)) transitions to the same next card 317. However, in
other embodiments, the gallery card behavior can be set such
that the next page that the sequence transitions to varies
based on the currently displayed gallery item or page. Of



US 9,460,228 B2

23

course, a wide variety of other card behaviors can be defined
and implemented using the same behavior definition
approach.

The actual structure of the descriptor used to define a
gallery card may vary significantly. By way of a represen-
tative card descriptor structure suitable for implementing a
gallery card is described in more detail below and is illus-
trated in FIG. 6C.

Triggers

A card can have one or more triggers embedded therein.
Triggers are hooks associated with displayed items that can
cause an action or behavior in response to an event (e.g. a
user input). That is, a predetermined user action or other
event (such as the selection of the displayed item) triggers a
defined action. In general, a trigger is a component 16 of a
card. The trigger has associated behaviors and one or more
associated handlers. When a triggering event is detected, the
associated handler causes execution of the desired behavior.

Virtually any type of computer detectable event can be
used to activate a trigger. In many circumstances, the
triggering event may be a user input such as the selection of
a displayed trigger component (e.g., by tapping or perform-
ing another appropriate gesture relative to a displayed item
configured as a trigger component). However, in other
circumstance, the activating event may be system generated.
System generated events can include sensor input based
events, time or timer based events, the receipt of a particular
message, the determination that a particular navigational
sequence has occurred within a wrap, geo-location or prox-
imity based events (e.g., the viewing device is located within
a particular store or geographic area, or near to other users
viewing the same wrap) or any of a wide variety of other
computer detectable events.

Once activated, a trigger may exhibit any desired behav-
ior which can be associated with the trigger through appro-
priate behavior declarations 95. Virtually any type of com-
puter implementable behavior can be associated with a
trigger. By way of example, a linking trigger may be used to
link the user to another card within the current wrap, to send
the user to another wrap, webpage or other destination. The
linking trigger may also be arranged to define a desired
linking behavior (e.g., open in same tab, open in new tab,
etc.). Other triggers may initiate a wide variety of other
action.

The ability to generally define triggering events and the
resulting behaviors is an extremely versatile construct that
provides wraps with tremendous flexibility and power. Thus,
triggers can be used to enable a wide variety of actions,
including invoking of a number of different application-like
functionalities or e-commerce related services. For example,
a trigger may be used to initiate an action (e.g., order a
product, conduct an online chat, sharing the wrap with
others, book or reserve a table at a restaurant, a hotel room,
a rental car, etc.). Almost any type of wrap component/asset
can be associated with a trigger, which gives authors tre-
mendous flexibility in guiding the user experience.

The wrap 310 illustrated in FIG. 7 has a number of
triggers. These include purchasing trigger 340 (FIGS.
7F-7K), subscription trigger 360 (FIG. 7L) and social media
triggers 381, 382, 383 (FIG. 7M). The purchasing trigger
340 is arranged to facilitate a user purchase of the displayed
product. As an illustrative example, the trigger 340 of FIG.
7F, is associated with a generally rectangular region that
bounds the text and graphic located at the bottom of the card,
including the text “pomegranate $18 for 12 16-ounce

10

15

20

25

30

35

40

45

50

55

60

65

24

bottles” and the adjacent “Buy Now” button. The region that
involves the trigger is generally shown by a dashed box in
FIG. 7F. Selection of the trigger 340 links the user to a
mechanism that facilitates the purchase of the identified
item. The other above-identified triggers in the wrap 310 are
characterized by and operate in a manner similar to the Buy
Now trigger 340 of FIG. 7F.

The implementation of a purchase mechanism within a
wrap package 10 may be widely varied. For example, in
some implementations, the user may be linked to the ven-
dor’s website, where the purchase may be made in a
conventional manner through the website. If this approach is
taken, it is often desirable to access the target website
through a “Cul-de-sac” so that the user is returned to the
wrap when finished with any transactions they wish to make
(a Cul-de-sac has the property of returning to the initiating
wrap card/page when the user closes the target website). In
another approach, the selection of the trigger causes the
wrap to transition to a purchasing card (or sequence of cards)
within the same wrap where the desired transaction can
occur. One such approach is described below with respect to
FIGS. 8A-8C. Alternatively, the transition could be to a
separate purchasing wrap. Regardless of the mechanism, it
is often desirable (although not necessary) to use a cul-de-
sac approach so that the user is returned to the card from
which the transaction was initiated after the transaction is
completed. In still other implementations, the transaction
can be completed without leaving the current card—particu-
larly when the user is using a secure viewer that knows the
user’s identity and relevant purchase related information. In
such an embodiment, the transaction can be completed using
a “one-click” purchasing option, where previously stored
customer billing, shipping and other account information is
used to process the purchase.

In a non-exclusive embodiment, the specific behavior
associated with the link may be declared in the same manner
described above. For example, consider a situation where
the trigger activates a link to an external website. There are
several ways that such a link could be implemented. One
approach might be to link to the target web page in the
currently active browser tab, which has the effect of navi-
gating away from the wrap. A second approach might be to
open a new browser tab and open the target webpage in that
new browser tab. A third approach might be to initiate a
Cul-de-sac in the current browser tab and open the target
webpage in the Cul-de-sac (a Cul-de-sac has the property of
returning to the initiating wrap card/page when the user
closes the target website). In such an arrangement, the card
template developer can make these three link behaviors
available to the trigger and the card author can select the
desired behavior. The card developer can also define a
default link behavior selection in the event that the card
author does not affirmatively make a selection. As can be
seen in Appendix [ of incorporated U.S. Provisional Patent
Application No. 62/210,585, trigger 340 in card 316 has
these three possible linking behaviors in response to acti-
vation of a trigger.

The ability to direct a user to a target website to complete
a transaction can be helpful in many scenarios. However, a
drawback is that it can be more difficult to track or guide user
behavior after the user has navigated away from the wrap.
Therefore, it is often preferable to design the wrap in a
manner that facilitates handling user side interactions
involved with a transaction from within the wrap itself.

The actual structure of the descriptor used to define a
trigger may vary significantly. By way of example, a rep-



US 9,460,228 B2

25

resentative trigger component descriptor structure is
described in more detail below and is illustrated in FIG. 6D.

Wrap Descriptors

Referring next to FIGS. 6-6F, a variety of specific descrip-
tor structures suitable for use in defining various wraps,
cards and/or components will be described. Although spe-
cific descriptor structures are illustrated, it should be appre-
ciated that the structure of the various descriptors can be
widely varied. In general, the descriptors are arranged to
define the structure, layout, content and behaviors of the
wrap without details of its presentation on a particular
device. That is, the descriptors capture the functional and
behavioral intent of the author, in a platform independent
way, such that the runtime may implement the described
structures and behaviors in a way optimal for the platform in
question.

A wrap generally will include multiple cards and the
corresponding wrap descriptor will typically have discrete
descriptors for each of the cards. The card descriptors each
include a unique card identifier and define the structure,
behavior, layout and content of the corresponding card.
Behaviors associated with any particular card can be applied
at the card level (i.e., associated with the card as a whole),
at a component level (i.e., associated to a particular com-
ponent alone—which may or may not include subcompo-
nents) or at any subcomponent level. Since the card descrip-
tors are discrete, self-contained, units with a unique
identifier, it is very easy to mix wraps (i.e., use cards created
for one wrap in a second wrap). When cards are mixed, their
components and associated behaviors remain the same—
although it is possible to define behaviors that are context or
state aware and therefore exhibit different states/properties/
responses/etc. in different circumstances.

The components are encapsulated units that may have
defined content (although such content may be dynamic)
and, when desired, specific defined behaviors, styles and/or
other attributes. In some preferred embodiments, each com-
ponent has a unique identifier and may optionally also have
an associated type and/or name. The use of encapsulated
components with unique component identifiers makes the
components highly modular such that an authoring tool can
readily use and reuse the same components in different cards
and/or wraps. Behaviors can be associated with the compo-
nent and any component can be composed of one or more
subcomponents which themselves are fully defined compo-
nents.

Regardless of the level to which they are applied (i.e.,
wrap level, card level, component level, subcomponent
level, etc.), the behaviors are preferably declared in the
descriptor rather than being explicitly defined within the
descriptor. In that way, the behavior declaration acts as a
hook which can be used to associate virtually any program-
mable logic with a card/component/etc. The behaviors are
preferably defined (or at least obtainable) by the runtime
viewer.

FIG. 6, diagrammatically illustrates the structure of a first
representative wrap descriptor 40. In the illustrated embodi-
ment, the wrap descriptor 40 includes the wrap 1D 42, the
wrap title 44, and a card descriptor 46 for each of the cards
14. Each card descriptor 46 describes of the structure, layout
and content of the associated card. The wrap descriptor 40
may also optionally include cover identifier(s) 43 and/or any
other desired information or metadata 45 relevant to the
wrap. The cover identifier(s) 43 identify any cover(s) 15
associated with the wrap. Other information and metadata

10

15

20

25

30

35

40

45

50

55

60

65

26

45 may include any other information that is deemed rel-
evant to the wrap, as for example, an indication of the
creation date and/or version number of the wrap, attributions
to the author(s) or publisher(s) of the wrap, etc.

The card descriptors 46 may be arranged in an array, deck,
or in any other suitable format. In the diagrammatically
illustrated embodiment, each card descriptor 46 includes: a
unique card identifier (card ID 71); a card layout 75; and
optionally, an associated card type 73. The card layout 75
preferably includes at least one of a layout identifier (layout
ID 76) and a layout definition 78 and optionally, a layout
name 77. When the layout definition is not explicitly pro-
vided in the card descriptor 46, it may be obtained by
reference through the layout ID 76. The layout definition 78
may be provided in a variety of different format. By way of
example, Cascading Style Sheets (CSS) works well. As will
be appreciated by those familiar with the art, CSS is a style
sheet language used for describing the look and formatting
of a document. Of course, in alternative embodiments, other
style sheets and/or other now existing or future developed
constructs may be used to define the layout of the cards.

The card ID 71 is preferably a unique identifier that
uniquely identifies the associated card 14. An advantage of
using unique identifiers as card IDs 71 is that the cards 14
are not wed to a particular wrap package 10, but rather, can
to be used in or shared among a plurality of wrap packages.
That is, once a card is created it can be used in any number
of different wraps by simply placing that card’s descriptor 46
at the appropriate locations in the card decks of the desired
wrap package. Thus, the unique card IDs 71 can be used to
help streamline the process of using one or more cards 14
from one wrap package 10 in a second wrap (sometimes
referred to as the “mixing” of cards 14 and/or wrap packages
10), which can help simplify the process of creating the
second wrap package. In some implementations, the card
IDs 71 may also take the form of URLs, although this is not
a requirement. A potential advantage of using URLs as the
card IDs 71 is that the URLs can potentially be used to allow
a card in the middle of the wrap to be more directly accessed
from outside of the wrap.

The card layout 75 defines the layout of the components
16 of the associated card 14. Preferably the card layout 75
includes a card layout ID 76 which uniquely identifies the
associated layout. In some embodiments, the descriptor
itself defines the layout using a conventional web presenta-
tion definition mechanism such as Cascading Style Sheets
(CSS). In other embodiments, the layout definition may be
accessed from a server using the layout ID 76. As will be
familiar to those skilled in the art, CSS is a style sheet
language used for describing the look and formatting of a
document written in a markup language. CSS enables sepa-
ration of document content from the document presentation,
including elements such as the layout, colors and fonts.
Thus, CSS is very well adapted for inclusion within the wrap
descriptor 40 itself.

It should be noted that the layout ID 76 is also useful in
the context of the aforementioned authoring tool used to
create and author wrap packages 10. Specifically, in some
embodiments, the authoring tool is provided with a number
of pre-defined templates (card layouts) from which an author
of' a new card can choose. Each template has one or more
containers/components 16, which are arranged on the card in
a predetermined manner for holding card content 17. The
template itself can have any particular layout, or can be used
to create a particular layout. In either case, the particular
layout can be assigned a unique layout ID 76, and thereafter,



US 9,460,228 B2

27

be used and reused in conjunction with different cards
thereby simplifying the card creation process.

The card type 73 (which is optional in the descriptor)
relates primarily to such an authoring tool. For convenience,
the templates may be categorized into different groups or
classes. By way of example, the classes/groups may relate to
their intended uses, the entity for which the templates are to
be used, to the creator of the templates or any other logical
grouping of templates. For example, card type 73, can be
assigned to one or more predefined card templates, depend-
ing on their intended function. For instance, an authoring
tool may include one or more card templates, each centric
for the display of text, visual media such as photos or
images, the playing of video, live or streaming media,
application functionality (e.g., scheduling appointments,
GPS, etc.), or supporting e-commerce (e.g., displaying prod-
ucts and/or services for purchases, chatting with online sales
representative, etc.) respectively. Thus for each template
type and class/grouping, card type ID 73 may be assigned.

With the template-based approach, the author(s) of a wrap
package 10 can easily select a desired template/card layout
that meets their need from a set of available templates and
create a new card by readily inserting the desired content,
functionality and/or services into the predefined containers.
Such a template based approach can greatly simplify the
authoring of cards 14 and wrap packages 10, since the
author(s) need not be an expert in HTML, scripting or other
typical web page language constructs required in order to
create the card(s) 14 as typically required with creating
conventional web pages. Rather, those details are embodied
in the selected template itself, which translates to a specific
layout 75, which in turn is identified by the layout ID 76.
When a run-time instance of the wrap package 10 is created,
layout 75 is used to format the associated card 14.

The associations between components 16 and their con-
tained content objects 17, whether explicit in the card
descriptors, or implicit and anonymous, are sometimes
referred to herein as “pins” 80. When explicit, pins 80 are
identified in the card descriptors 46 by a universally unique
Pin ID 81, and by a symbolic pin name 82. When implicit,
pins are anonymous at runtime, but may at design time be
instantiated in order to provide operable constructs to the
authoring tools, in which case they will share the name and
ID of the component they bind and associate.

Whether implicit or explicit, these conditions are equiva-
lent, and one representation may be trivially transformed
into the other and vice versa, with no loss of meaning. The
runtime, authoring environment and other tools are free to
transform the object graph as they see fit, and whether the
association is treated as intrinsic or extrinsic is irrelevant for
the purposes of the determination of the structure of the wrap
and its contents, this transformation being a matter of
convenience.

The symbolic name of a pin (pin name 82) or component
is both Human and Machine-Readable, for example, “Head-
line”, “Glyph”, “Body”, “Image”, “Video™, “Cul-de-sac”, or
any other heading that the template designer deems appro-
priate. The symbolic name is used to identify its function;
can be used and bound to by constraints and layouts to
further constrain their display, behavior and function; and is
used by the authoring tools to identify the role of the
thus-associated component and map fields from one layout
to another when changing the layout associated with a card.
Multiple pins or components can share the same symbolic
name. When they do, it implies that they serve the same role
in the system, and that the same rules will apply to them.

40

45

28

Components 16 contain there associated content 17 and
may also contain or reference zero or more attributes or
constraint objects, specifying metadata to manage or modify
the display of, or behavior of, that component. Constraint
objects may specify abstract symbolic data used by the
runtime to determine how to display or manage the object
containing it, (the Constrained Object) or the behavior of
that object. Examples of such abstract symbolic data are
CSS class names, behavior names, or other symbolic names
acted on by other objects in the system. Constraints may also
contain concrete specifications to modify the display or
behavior of the object, or its container or any contained
objects. An example of the former is containing CSS rules
applied to the content. An example of the latter is inclusion
inline or by reference of JavaScript code that acts on the
constrained object.

The various constraint objects may be thought of as
attributes that define the style, format, behaviors, source/
feed, and/or constraints associated the corresponding con-
tent 17. In the illustrated embodiment, these attributes 86
include style attributes 93, source attributes 87 and other
constraint objects such as behaviors 60, 62. Of course, other
attributes of a component can be defined and declared as
appropriate for the associated content.

The style attributes associate various styles with the
content 17 and may take the form of style sheets (e.g. CSS)
or other conventional style definition mechanisms. By way
of example, if the content 17 is a text string, the style
attributes 93 may include features such as the font, size,
case, color, justification, etc. of the text. If the content is a
glyph, the style attributes may include the color of the glyph,
the size, etc.

The source attributes 87 indicate the source of the asso-
ciated content 17. In some circumstances, the source attri-
bute may simply be a reference or pointer (e.g. a URL) that
identifies the location of a static content object (e.g., an
image, a photo, a video, etc.). However, it should be
appreciated that the content can also be dynamic. For
example, the content object associated with a component of
a wrap could be the current price of a particular stock. In
such a case, the source attribute identifies the feed from
which the current price will be retrieved when the card is
rendered.

The ability to incorporate content from feeds into a wrap
is a powerful construct that facilitates a wide variety of
different functionalities including streaming media and/or
the dynamic updating of information presented in a wrap
after the wrap has been rendered. In general, a feed is a
structured source. As will be appreciated by those familiar
with the art, there are a wide variety of different types of
feeds and different feed structures. For example, a web feed
is a data format for providing users with frequently updated
content. When desirable, web feeds may be structured to
provided content that can be dynamically updated after the
wrap has been rendered. Some web feeds are server side
event driven as is commonly used to facilitate live updates—
as for example, sports score updates, stock price updates,
etc. Other web feeds are polling feeds in which the wrap
periodically polls a source. Another type of feed is a
streaming feed. For example, a live streaming feed may
present a live stream that is progressively rendered as the
stream is received. Examples of live streams include live
video streams, audio streams, biometric streams, stock ticker
streams.

It is anticipated that in some circumstance, it may be
desirable to transform the feed source on the server side,
specifically for the purpose of better consumption by the



US 9,460,228 B2

29

wrap runtime, in the context of the wrap package in which
it is to be presented. In such circumstances, specific middle-
ware may transform external sources in order to prepare
them for this consumption.

The source attribute 87 may take the form a feed descrip-
tor that defines the nature and structure of the feed as well
as its feed characteristics including source location, data
format(s), update semantics, etc. For example, some feeds
(e.g. live feeds and live update feeds) require that a socket
be opened and kept open as long as the feed is active. Polling
feeds require the identification of the desired polling fre-
quency. This and other metadata addressing the update
semantics of the feed may be contained in the feed descrip-
tor, and inform the runtime of the desired update behavior.
In other embodiments, the source attribute may include a
reference to a data feed object (not shown) that defines the
data feed.

It should be appreciated that there are a very wide variety
of different types of information/content that a wrap author
may desire have updated dynamically while a wrap is being
displayed. These might include items that may be expected
to update frequently and others that may update very slowly.
By way of example, a few examples of items that may be
desirable to update dynamically include sports scores, stock
prices, the number of tickets still available for purchase for
an event, number of units of a product that are available or
simply an indication of whether a product is in our out of
stock, breaking news headlines, etc. A number of services
can also benefit from the ability to dynamically update
content based on information that can change while a wrap
is displayed such as, the user’s geographic location, social
networking group information (e.g. friends or peers that are
nearby, online, etc.), featured information, etc. For example,
a card in a wrap for a sports stadium could show the nearest
concession stands, restrooms, etc. which can vary as the user
roams around the stadium. Another card could show the stats
of a baseball player currently at bat. A social networking
card may inform a user when their friends or others sharing
similar interests are nearby. A retailer may wish to run
special offers that update periodically. Of course, these are
just a few examples, and the types of content that a wrap
author may wish to be able to update dynamically is only
limited by the creativity of the author.

Other constraint objects may include declarations of spe-
cific behaviors that are intended to be associated with the
component 16 and/or content 17. Such behaviors may
include behaviors 60, 62 known to or accessible by the
runtime viewer 50 as discussed above.

FIG. 6A diagrammatically illustrates an alternative pin
based card descriptor structure 46A. Appendix II of incor-
porated U.S. Provisional Patent Application No. 62/210,585
illustrates a representative wrap descriptor 40A that takes the
form of a JSON object that utilizes the pin based card
descriptor structure 46A illustrated in FIG. 6A. FIGS. 27A-
27E illustrate the wrap defined by the wrap descriptor of the
referenced Appendix II. To facilitate correlation between the
Appendix and FIG. 6A, various descriptor eclements are
labeled with corresponding reference numbers in that
Appendix II.

In the embodiment of FIG. 6A, the card descriptor 46
includes a unique card ID, 71, a card name 72, card type 73
and a card layout 75. The layout 75 includes a layout ID 76,
optionally a layout name 77 and an explicit layout definition
78. In the illustrated embodiment, the layout definition takes
the form of style sheets (e.g., cascading style sheets (CSS)).
Although the illustrated embodiment includes both the lay-
out ID 76 and an explicit layout definition 78, it should be

40

45

30

appreciated that either could be eliminated from the descrip-
tor if desired. For example, if the explicit layout definition
is not part of the descriptor structure, it could be accessed
through the use of the layout ID. Alternatively, when the
layout definition 78 is explicitly provided, the explicit use of
the layout ID 76 may be eliminated. However, it is generally
preferable to explicitly provide the layout ID.

The descriptor 46 A also includes an array of zero or more
pins 80, with each pin 80 corresponding to a first level
component 16. Each pin 80 includes a pin ID 81, a pin name
82 and an associated component 16. The component 16
includes a component ID 88, a component type 89, and the
component content 17. As indicated above, the content may
be provided in-line or by reference. Any desired attributes
and behaviors may then be associated with the component
through a set of zero or more component attributes 86 which
potentially include any desired component style class dec-
larations 91, component style sheets (CSS) 93 and compo-
nent behavior declarations 95. In the illustrated embodiment,
the style class declarations 91 refer and bind to CSS classes
defined in the layout definition 78 that are used to define the
format of'the associated component 16. Numerous examples
of this binding can be seen in the Appendix II of incorpo-
rated U.S. Provisional Patent Application No. 62/210,585.
By way of example, the first pin 80(1) in Appendix II has an
associated component style class declaration 91(1) that
refers to and binds the font size style “font size-x1” 96
defined in layout 78 to the associated text content 17(1).

Component style sheets 93 provide an alternative com-
ponent level mechanism for associating specific styles and
formatting with a component 16. In general, it is expected
that the card layout definition 78 will define the styles and
formats associated with each component in a robust manner
that is satisfactory to the card author. In such implementa-
tions, there is no need to include any component level style
sheets 93, and it is expected that in many (indeed most) such
card implementations, no component style sheets would be
provided. Rather, the associated styles may be bound
through the use of class declarations 91. However, the
component style sheets 93 provide a mechanism by which
the style assigned to the component by the layout definition
78 may be overwritten, which gives card authors great
flexibility in defining the stylistic presentation of their
content without altering the card layout definition. In other
implantations, it may be desirable to define some of the style
attributes at the component level rather than the card level.
In such implementations more aggressive use of component
level style sheet 93 would be expected. In still other embodi-
ments, the availability of component level style sheets can
be eliminated altogether. In the illustrated embodiment, style
sheet are used to assign styles to the components since they
are currently a popular format for associating different styles
with HTML content. However, it should be appreciated that
other now existing or later developed constructs can readily
be used to associate styles with the content as appropriate.

Behaviors 60, 62 can be associated with a component on
the component level in the same manner as the style sheets.
This can be accomplished, for example, through the use of
behavior declarations 95 which declare specific behaviors
60, 62 with their associated component. It should be appre-
ciated that the ability to associate specific behaviors with
specific components in a general manner provides tremen-
dous flexibility in the card creation process that facilitates
the creation of cards having an incredibly wide range of
functionality and behaviors while maintaining a simple,
compact, and highly portable wrap structure. Even though
there is an ability to associate behaviors with specific



US 9,460,228 B2

31

components, it is expected that the behavior set may be null
for many components because they would have no need to
have any specific behaviors associated therewith.

The card descriptor 46 A also associates any desired card
level attributes and/or behaviors with the card through a set
of zero or more attributes 86C that are associated with the
card at the card level. Like the component attributes 86, the
card attributes 86C potentially include any desired card level
style class declarations 91C, card level style sheets 93C
and/or card level behavior declarations 95C which work in
substantially the same way as the component attributes,
except that they operate at the card level. When desired, the
wrap descriptor 40 can also have similar wrap level attri-
butes 86W. Similarly, when the content of a component
includes one or more subcomponent(s), the various subcom-
ponent(s) may have their own associated component attri-
butes 86 regardless of the tier of the component/subcompo-
nent. Still further, when desired, attributes can be associated
with groups of components.

FIG. 6B diagrammatically illustrates an alternative card
descriptor structure 46B that does not utilize pins 80. The
structure of card descriptor 46B is generally similar to the
structure of card descriptor 46A described above with
respect to FIG. 6A except for the use of pins. Therefore, the
attributes (e.g., styles and behaviors) are associated with
their corresponding components 16 rather than with pins 80.
Like in the embodiment of FIG. 6 A, the card descriptor 46B
includes a card ID 71, a card name 72 and a layout 75. The
layout 75 includes a layout ID 76, layout name 77 and layout
definition 78. The descriptor then includes an array of zero
to many components 16.

Each component 16 includes a component 1D 88, a
component name 84, a component type 89, the associated
content 17 and the associated attributes 86. Like in the
previously described embodiment, the associated attributes
may include associated classes 91, component style sheets
or definitions 93, behavior declarations 95 and/or their
associated behaviors 60, 62. Thus it can be seen that card
descriptors 46B are functionally substantially equivalent to
the card descriptors 46 A described above.

Appendix III of incorporated U.S. Provisional Patent
Application No. 62/210,585. illustrates a representative
wrap descriptor 40B that takes the form of a JSON object
that utilizes the component based card descriptor structure
468 illustrated in FIG. 6B. This descriptor defines the same
wrap illustrated in FIGS. 27A-27E and is generally equiva-
lent to the wrap descriptor of Appendix II of incorporated
U.S. Provisional Patent Application No. 62/210,585. To
facilitate correlation between Appendix III and FIG. 6B,
various descriptor elements are labeled with corresponding
reference numbers in the Appendix. It is noted that the
attributes container 86 is labeled “Styles” in the JSON code
of Appendix II1.

Although only a few particular card descriptor structures
have been described, it should be appreciated that equivalent
functionality can be obtained using a wide variety of dif-
ferent descriptor arrangements.

Gallery Card Descriptors

FIG. 6C illustrates a representative gallery card descriptor
46G. The illustrated embodiment uses the component based
descriptor approach of FIG. 6B although it should be appre-
ciated that other card descriptor hierarchies (such as those
illustrated in FIGS. 6 and 6A can be used as well. Gallery
card descriptor 46G includes card ID 71G, card name 72G
(in this case “Gallery Card”), and card layout 75G with

10

15

20

25

30

35

40

45

50

55

60

65

32

layout ID 76G, layout name 77G and CSS layout definitions
78G, which together define a layout suitable for a gallery
card. The initial component is gallery component 16G,
which has a component ID 88G, a component name 84G, a
component type 89G, gallery component content 17G, and
any associated attributes 86G (including class declarations
91G, style sheets 93G and behavior declarations 95G).

In the illustrated embodiment, both the component name
84G and the component type 89G are “Gallery.” The “con-
tent” of the gallery component 16G is a set of one or more
gallery item components 116. Each of the gallery item
components 116 typically, although not necessarily, has the
same component structure previously described and can be
thought of as subcomponents. This introduces a powerful
feature of the described architecture. That is, the “content”
of any particular component may be one or more “subcom-
ponents”. Similarly, the content of any of these “subcom-
ponents” may also include one or more next tier components
and so on, with the components at each tier having the same
generic structure. Thus, each gallery item component 116
includes: a component ID 88, which may be thought of as a
gallery item ID; a component name 84, a component type
89, content and any associate attributes 86 (potentially
including class declarations 91, style sheets 93 and behavior
declarations 95).

In the illustrated embodiment, the component name 84
and component type 89 for the gallery item 116 is “Gallery
Item”. The content of the gallery item 116 is a set of
components (subcomponents) that make up the gallery item
(that is, gallery items 116, which are subcomponents of the
gallery component 16G, themselves have subcomponents
which might be thought of as third tier components). Each
of these gallery item components has the same structure as
any other component. By way of example, the gallery item
components may include a headline component 16H, and an
image component 161 (shown in Appendix III of incorpo-
rated U.S. Provisional Patent Application No. 62/210,585).
Only the headline component 16H is shown in FIG. 6C, but
the content of a representative headline component 16H and
image component 161 may be seen in gallery items 116(1)-
116(3) shown in FIGS. 27B-27D and the corresponding
JSON descriptor is shown and labeled in Appendix III.

With the described structure, specific behaviors or styles
can be associated with components at any level. Thus, for
example, a behavior can be associated at the card level, the
gallery item level, the component of a gallery item level or
at any other level at which components are used. An
example of a card level behavior might be the aforemen-
tioned gallery card “snap to item” behavior 60C, which can
be seen in the Appendices I, Il and III. An example of a
gallery item subcomponent level behavior might be a trigger
as described below.

Although a particular gallery card descriptor structure has
been described, it should be appreciated that equivalent
functionality can be obtained using a wide variety of dif-
ferent descriptor arrangements.

Trigger Descriptors

Referring next to FIG. 6D a descriptor structure for a
representative trigger component will be described. Like
other components, the trigger component 16T includes an
optional trigger component ID 88T, a component type 89T,
a component name 84T, content 17T and any associated
attributes 86T (including any class declarations 91T, style
sheets 93T and behavior declarations 95T). In the illustrated
embodiment, the component type 89T is labeled “trigger”



US 9,460,228 B2

33

and the component name 84T is labeled “transact” indicat-
ing that the trigger is a transaction trigger.

The content 17T of the trigger component 16T in this
illustrative example includes three subcomponents. The sub-
components include a text box 16TT, an image 16TI that
takes the form of a “buy button™ and a link 16L.. An example
of such a trigger 340 can be seen in FIG. 7F wherein the
content of the text box 321 is “pomegranate $18 for 12
16-ounce bottles™, the content of the image is the buy button
327 and the link is a link to an external e-commerce site
where a purchase transaction may occur. The link 161 has an
associated behavior “open-in-new-tab”, which causes the
browser to open the target URL in a new tab when the trigger
is activated by tapping on a touch sensitive display any-
where within the region defined by the trigger or by other-
wise activating the trigger. The described link trigger behav-
ior is a good example of a component level behavior.

In the illustrated embodiment, the link component 16L is
a first level component of the trigger and therefore the link
is activated by tapping on (or otherwise selecting) any
component within the trigger—as for example either the text
box 321 or the buy button 327. If the card creator preferred
to have the link activated only by selection of the buy button
327, that can readily be accomplished by making the link a
component of the buy button rather than a first level com-
ponent of the trigger—or, by moving the text box component
definition out of the trigger—as for example to the same
component level as the trigger itself. Any tap or click in the
bounding rectangle of the trigger, as defined by the compo-
nents contained by the trigger, results in the trigger being
activated.

It should be apparent that the trigger component may be
included as a first tier component in the card descriptor or as
a subcomponent at any level within the card descriptor
hierarchy. Although a particular trigger descriptor structure
is illustrated, it should be appreciated that equivalent func-
tionality can be obtained using a variety of different descrip-
tor arrangements. It should further that FIG. 6D is illustra-
tive for providing an example for the purchase of an item for
sale. It should be understood, however, the cards can be
authored with triggers for a wide variety of actions besides
purchasing an item, such as the reservation or booking of
goods and/or services, online chats, GPS related services
and functionality, etc.

Feed Descriptors

As indicated above, there are a wide variety of different
types of feeds and feed structures that may be desirable to
incorporate into any particular wrap. To facilitate the use of
feeds, any wrap descriptor 40 or individual card descriptor
46 may include one or more feed descriptors 187. Each feed
descriptor 187 has a number of descriptive elements that
together define an associated feed in a manner that can be
used by the runtime to integrate information from the feed
into a rendered wrap instance in the manner desired by the
wrap author.

Referring next to FIG. 6E, a representative feed descriptor
187 in accordance with a nonexclusive embodiment will be
described. In the illustrated embodiment, the descriptive
elements of feed descriptor 187 include a feed type 105, a
feed source 107, a desired lifecycle 109, a feed target 111, an
update frequency indicator 113 and any required feed
parameters 115. Of course, not all of these descriptive
elements are required in every feed descriptors and any
particular feed descriptor may include one or more addi-

20

30

40

45

55

34

tional descriptive elements as appropriate. The feed descrip-
tor 187 may also optionally include a feed ID 103 and/or a
feed name 104.

The feed type 105 indicates the type of the associated
feed. In general, most feeds can be categorized into catego-
ries or “types” that share similar traits and/or requirements.
As previously discussed, some of the feed types might
include “live” (server side event driven) feeds, polling feeds,
streaming video feeds, streaming audio feeds, etc. When the
feed descriptor is processed by the runtime, the feed type can
be used to help identify the resources that may be required
to support the feed. For example live streaming feeds and
server side event driven feeds may require the opening of a
socket for the feed and keeping the socket open for the
duration of the defined feed lifecycle 109.

As will be appreciated by those familiar with the art, most
web feed are formatted using either RSS or Atom and the
runtime can be configured to handle either of these web feed
formats or any other desired feed format. Typically, it is not
necessary to specifically identify the feed format in the
descriptor, however, we desired, a feed format field (not
shown) can be added to the descriptor or the feed format can
be dictated by the feed type.

The feed source 107 indicates the location from which the
feed can be obtained. Often, the feed source 107 takes the
form of a URL, although other endpoints or source identi-
fiers may be used in alternative embodiments.

The lifecycle 109 indicates the feed’s lifecycle semantics.
That is, when and how the feed in activated, the conditions
under which it remains active and potentially, when it is
closed. For example, a few potential lifecycles might
include: (a) “while-card-visible” which opens the feed when
that associated card is displayed and keeps the feed active as
long as the associated card is the visible card within the
wrap; (b) “always” which opens the feed when the associate
wrap is rendered and keeps the feed active as long as the
wrap is displayed; (c) “on-card-open”—which activates a
feed any time the wrap transitions to the associated card; (d)
“on-wrap-load” which opens the feed when the wrap is
loaded; (e) “on-user-selection” which opens and/or updates
the feed in response to a user input (e.g., the selection of a
displayed button or other user activated trigger). Some of the
lifecycles, such as “while-card-visible” and “always” may
be more appropriate for live and streaming feeds, or feeds
that affect globally-visible wrap state (e.g. in a globally
visible sports score ticker or stock ticker) whereas others,
such as “on-card-open” or “on-wrap-load” may be more
appropriate for polling feeds. Which type of feed is most
appropriate is highly context-dependent, and will be deter-
mined by wrap authors.

The semantics of feed lifecycle management when a feed
is no longer active may also vary widely based on what is
appropriate for a particular feed. To illustrate this point,
consider a feed that is active “while-card-visible.” When the
user navigates away from the relevant card, the feed
becomes “inactive” and there are several different feed
handling approaches that can be utilized at that stage. For
example, in some circumstances, it may be desirable to
simply close the feed and the associated connection when
the user navigates away from the relevant card. Thereafter,
if the user navigates back to the card, a new feed/connection
is opened—with or without retained knowledge of what was
previously downloaded. In other circumstances, it may be
desirable to continue to accumulate any updates associated
with the feed at the server while the feed is “inactive”, and
to forward such updates to the wrap in a batch if, and when,
the user returns to the associated card. In such circum-



US 9,460,228 B2

35

stances, the connection associated with the feed might be
kept open while the user continues to navigate within the
wrap, and thus, the connection would only be closed when
the wrap itself is closed or the feed times out. Although only
a few “inactive” feed management approaches have been
explicitly described herein, it should be appreciated that a
wide variety of other mid-life and end of life feed manage-
ment techniques can be used as appropriate for any particu-
lar implementation.

Feeds may also remain active in order to collect events,
and to initiate alerts related to those events. For example, in
a chat session, it may be desirable for a wrap may indicate
that there was activity on another card, based on an incom-
ing chat message, and in some cases not force the user back
to that card. In other cases the wrap author may choose to
cause the user to be brought back to a chat card when a new
message comes in. Moreover, a feed may be manually
initiated or terminated, e.g. in the case of a user chat session,
when the user chooses to initiate or terminate a chat session,
perhaps with a customer service person, or another user.

The target 111 indicates the callback endpoint for the
feed—which may be the method to call when an event
happens. In many implementations, the target will be a
container within the wrap that the feed is to be associated
with. In many circumstances, the intended container will be
the component or other structure (e.g., card/wrap) within
which the feed descriptor 187 is defined within the wrap
descriptor 40. That is, when the feed descriptor 187 is
included as part of a particular component definition, it
might be assumed that the feed is intended to be bound to
that particular component. Alternatively, if the feed descrip-
tor 187 is included as part of a card descriptor 46 outside of
any of the associated component descriptions, it might be
assumed that the feed is intended to be bound to the
associated card. Still further, if the feed descriptor is
included as a part of a wrap descriptor 40 outside of any of
the associated card descriptors 46, it might be assumed that
the feed in intended to be bound to the wrap as opposed to
any particular card or component.

However, in other situations, it may be desirable to bind
a feed to an endpoint or containing structure that is different
than the structure within which the feed descriptor appears
within the wrap descriptor. For example, in some circum-
stances it may be desirable to overlay the feed content over
all of the cards or a subset of the cards within a wrap. In such
a circumstance, it may be desirable to associate the feed
descriptor with the overlay or the wrap rather than a par-
ticular card or card component. At the same time, the feed
may be defined as part of a particular card, or as part of a
particular component of a particular card. As such, although
the feed is defined (via the feed descriptor 187) as part of a
particular card/card component, it may be desirable to
associate the feed with an endpoint other than the card/
component. The target field 111 provides a simple mecha-
nism that provides great flexibility in allowing a card author
to associate a feed with any suitable structure within the
wrap without forcing a rigid feed descriptor authoring
syntax, while the default behaviors make it easier for the
author to build more standard feed behaviors.

In embodiments, in which the target 111 is not explicitly
defined, the default target may optionally be set to the
container associated with the structure within which the feed
descriptor appears in the wrap descriptor 46. Alternatively,
the default target could be the containing card, wrap or other
level container. In still other embodiments, the explicit target
definitions can be eliminated and all targets can be implicitly
defined by the location of the feed descriptor 187 within the

20

25

40

45

55

36

wrap descriptor. Although such an arrangement can work
well, it should be appreciated that it lacks some of the
flexibility provided by supporting explicit target definitions.

When explicit, the target can be identified relatively, by
reference or through the use of explicit identifiers. By way
of example, in a particular embodiment, representative tar-
gets include: “container”—which refers to the container
associated with the structure within which the feed descrip-
tor 187 appears; “parent”—which refers to the parent of the
structure within which the feed descriptor 187 appears;
“card”—which refers to the card within which the feed
descriptor 187 appears; “warp”—which refers to the wrap
within which the feed descriptor 187 appears; “grandpar-
ent”, etc. It is noted that when a relative term such as
“parent” is used, the level of the containing structure will be
dependent on context. For example, when “parent” is used
in the context of a subcomponent, the “parent” would be the
containing component. However, when the term “parent” is
used in the context of a first level component, the term
“parent” would refer to the containing card, etc. It should be
noted that the same target can be identified by multiple
methods: relative references, absolute references, and
default references being the primary embodiments.

The frequency 113 is particularly relevant to polling feeds
and indicates how often the feed should be polled. In some
circumstances it will only be desirable to poll the feed
once—e.g., when the associated card is opened, which can
be uniquely defined by the combination of Lifecycle: on-
card-open and Frequency: once. In other circumstances it
may be desirable to periodically poll the feed, as for
example, every minute, every 15 seconds, every 5 minutes,
etc. In still other circumstances it may be desirable to poll
when the card or wrap is first opened and thereafter only poll
in response to user inputs or other events, as for example in
response to the user selection of an “update” button (not
shown). Of course, a very wide variety of other update rules
can be defined through the use of different frequency and
lifecycle constraints, and the feed may itself update the
polling frequency for subsequent reads, over the life of the
interaction.

Some feeds may require the passing of specific param-
eters to the server that may be used by the server for various
control, tracking or authentication or other purposes. Feed
parameters 115 can be used to pass such parameters to the
feed server. In the illustrated embodiment, the feed param-
eters take the form of name/value pairs although other data
structures can be used in other embodiments. In some
circumstances, the feed parameters 115 may be static and
explicitly included in the wrap descriptor. For example, if a
card employing a feed is associated with a particular ad
campaign, it may be desirable to identify the ad campaign
through the use of campaign identifier passed a feed param-
eter. In other circumstances the feed parameters may be
variables. For example, a card arranged to provide current
MLB scores sports may use team identifier parameters to
identify the teams of interest to the user, with the user being
given the ability to select the teams of interest—as for
example through the selection of one or more teams of
interest through a menu provided on the card. Of course the
specific parameters that are appropriate for any given feed
and the manner in which the parameters are obtained may
vary widely and will often depend in large part on the APIs
associated with the feed.

As described in more detail below, a feed engine 540 in
the runtime viewer has a set of rules that know how to access
and bind the feed appropriately based on the descriptor
information. Thus, the runtime viewer can readily access the



US 9,460,228 B2

37

feed source and deliver the content to the appropriate
container when the associated card/wrap is rendered based
on this descriptor information.

The actual contents of any particular feed descriptor can
vary significantly based on the nature of the feed and its
intended use within the wrap. For example, a representative,
nonexclusive, polling feed descriptor 187a may have the
following structure:

Feed:
Type: polling
Source: https://feed.wrap.com/macys/catalog-spring_ 15
Lifecycle: on-card-open
Target: container
Frequency: once

(187a)
(105)
107)
(109)
i1
(113)

In this embodiment, the feed descriptor 187a defines a
“polling” feed as indicated by “polling” feed type 105. The
feed is queried once each time the card is opened as
indicated by frequency indicator 113 and lifecycle 109
respectively. The source 107 of the feed as well as the target
container 111 are also provided. In this example the target is
“container” which refers to the structure within which the
feed descriptor 187 appears. Of course, the feed descriptor
may also optionally include a feed ID 103 and/or a feed
name 104, in addition to any feed-specific parameters.

In another example, a representative, nonexclusive, server
side event driven feed descriptor 187(b) may have the
following structure:

Feed:
Type: live
Source: https:/live-feed. wrap.com/mlb/scores
Lifecycle: while-card-visible
Target: container
Parameters:
Teams: [SFG, NYM]

(187b)
(105)
107)
(109)
i1
(115)
(116)

In this embodiment, the feed descriptor 1875 defines a
“live” server side event driven feed as indicated by “live”
feed type 105. The feed is activated any time that the card
is visible so that updates can be displayed as they are
received. The runtime feed engine 540 knows to open a
connection with the server when the associated card is
displayed and to keep it open as long as the card is visible
based on the feed engine rules associated with “live” feed
types 105 and the declared “while-card-visible” lifecycle
109. The source 107 of the feed as well as the target
container 111 are indicated in the same manner as the
previously described polling feed 187a. The card associated
with the illustrated feed is designed to provide current scores
for MLB baseball games. The feed is arranged such that the
specific teams to be followed can be identified in feed
parameters 115 (i.e., Team parameters 116) sent to the
server. In the illustrated example, two teams, the San Fran-
cisco Giants and the New York Mets are indicated. As such,
the feed will only provide updates on games involving at
least one of those teams. In the illustration above, the team
parameters 116 are specifically identified in the descriptor.
For cards that are associated with one or more specific
teams, it may be desirable to include explicit team param-
eters 116 in the descriptor. However, in other instances, the
associated card may include a selector interface that allows
users to select which games they are interested in following.
In such a case, the team parameter in the descriptor might

10

15

20

25

30

35

40

45

50

55

60

65

38

specify that selector, might be a null or default field that can
be filled and/or overridden by user selection, or other
structure as appropriate.

One of the application functionalities that is supported by
the wrap runtime is chat services. Thus, chat functionality
can readily be integrated into the any wrap. Chats typically
require the use of a feed which can be defined in the same
manner as other feeds. The feed used in a chat session can
take the form of a live feed, a polling feed, or any other
available feed structure. The feed structure that is most
appropriate for any particular chat will depend in large part
on the nature of the communications that are expected. In
implementations where communications are expected rela-
tively continuous, a live feed may be most appropriate. In
implementations where communications are expected to be
relatively infrequent, a polling feed with an appropriate
polling interval may be more appropriate. The specific chat
feed structure may vary with the design intent of the chat
tool provider. By way of example, a representative, nonex-
clusive, chat feed descriptor 187(c) may have the following
structure:

Chat:
Type: Customer Service
Source: https://chat.wrap.com/macys/customer__service
Lifecycle: open-on-user-selection
Target: chat-overlay
Frequency: every 30 seconds
Parameters:
User Name: [$user__name]
Account No.: [Account-#]

(187¢)
(105)
107)
(109)
i1
(113)
(115)
(116)

In this embodiment, the feed type is customer service 105
which is a polling type feed with the update frequency 113
is “every 30 seconds.” In the frequency example, ‘every’ is
a keyword indicating a polling interval, 30 is a parameter
indicating the number of units, and ‘seconds’ indicates the
units applied to the unit parameter. There are a number of
other chat types that may be appropriate, but way of
example, “group” chat which may involve multiple partici-
pants, “single user” which may be a point to point chat, etc.

The lifecycle 109 is defined as “open-on-user-selection”
which indicates that the feed is activated directly or indi-
rectly by user selection as opposed to automatically when
the wrap is renders or an associated card us displayed. Any
suitable gesture can be used to activate the feed—as for
example, by a user tapping or clicking on a “Chat Now”
button (thereby activating a trigger that in turn launches the
chat session). Some chat sessions may require or request
certain information to initiate the session. When some (or
all) of the required information is known at the time the wrap
is authored, the appropriate information/values can be
included in the feed descriptor parameters 115. For example,
in the illustrated embodiment, a user name and an account
number is desired (if available). Although user specific
information would not be known at the time the wrap is
authored, variables can be provided in the descriptor, (e.g.
$user_name) as placeholders, (e.g. [Account #]), or be
incorporated dynamically from session state information,
user cookies, or other available state information.

User specific information such as user name, account
number (in illustrated embodiment a Macy’s account num-
ber) may be stored persistently at any appropriate location,
as for example in a state descriptor, the runtime viewer, a
cookie associated with the runtime viewer, etc. The runtime
viewer 51 can then look up the information corresponding to
the declared variables appropriately at runtime—e.g., when



US 9,460,228 B2

39

the wrap is rendered, when the chat session is launched or
at any other time that is deemed appropriate. In some
circumstances, the requested information may not b avail-
able to the wrap. If the requested information is optional,
then the chat session can be initiated without that informa-
tion. If required, the user may be prompted to input the
requested information.

Widgets

Application functionality can be incorporated into a wrap
in a wide variety of different manners. In some wraps,
behaviors are integrated directly into one or more card to
instill desired wrap functionality. Another construct that the
wrap runtime supports to facilitate the integration of differ-
ent functionalities into a wrap is the component type “wid-
get.” Conceptually a widget component creates an internal
frame within the associated card (e.g. an HTML iframe) and
points to an external source that supplies the content for the
internal frame. The widget component typically contains a
URL that points to the source (e.g., a server associated with
the widget) and may specify any number of parameters to be
passed to the server that may be helpful to the server in
determining the specific content that is appropriate to supply
to the internal frame. When a widget component is loaded by
the runtime, the runtime creates an internal frame within the
associated card and obtains the contents to populate the
internal frame from the identified source. Thus, the content
rendered within the internal frame associated with the wid-
get is dictated by a source/server that is external to the wrap
runtime rather than by the wrap descriptor itself. By using
widget components, third parties can introduce any desired
content or functionality into a wrap.

In a specific example, the internal frame may take the
form of an HTML iframe which is a well established HTML
construct that facilitates embedding a document inside
another document. The iframe effectively creates a blank
frame within the associated card that can be populated with
content supplied by a server associated with the widget. The
content may be provided in HTML format which allows
standard browsers to render the content within the frame.
The HTML may include any desired scripts (e.g. JavaScript)
to provide the widget with desired behaviors. HTML iframes
work particularly well because HITML is currently the de
facto standard markup language used to create web pages
and is therefore supported by virtually all state of the art web
browsers and is familiar to most web designers. Although
HTML iframes are used in the specific example, it should be
appreciated that in other embodiments, the internal frames
may be constructed using other structures and/or may be
have their content delivered in a variety of different now
existing or later developed formats, markup languages, etc.

To incorporate a widget into a card, a widget component
descriptor 118 is included in the associated card descriptor
46. A representative widget descriptor architecture is illus-
trated in FIG. 6F. In the illustrated embodiment, the widget
descriptor 118 includes a component type 89W (which in
this case is type “widget”), a component ID 88W, an
optional component name 84 W, and a widget definition 120.
The widget definition 120 includes a widget 1D 121, a
widget name 122 and a definition 124 which is labeled
“schema” in FIG. 6F. The definition 124 includes a source
identifier 126 that identifies the location of the server that
will supply the widget content and parameter(s) 130 that
represent parameter(s) to be passed to the server when the
widget is instantiated. The widget definition 120 also pref-
erably includes frame size and position related identifiers

10

15

20

25

30

35

40

45

50

55

60

65

40

such as width 127, height 128 and position 129. The width
127 and height 128 identify the internal frame’s intended
height and width, while the position 129 identifies its
position within the card—e.g., the X-Y coordinates of its
origin. It should be appreciated that the actual dimensions of
the displayed cards may vary with the size of the screen
upon which the wrap is displayed. Therefore, the various
size parameters may be relative rather than absolute (e.g.,
10%, etc.) Of course, in alternative embodiments, the
dimensions and location of the internal frame can be defined
in other manners. As with all components, the widget may
also have associated attributes 86 (e.g., styles, behaviors,
etc.).

The nature of the parameters 130 that are included in any
particular widget descriptor will vary widely with the nature
of the widget itself and the information that the widget
developer deems important to the widget content server. If
the widget content is static and the frame size is known to
the server, there may be no need to include any parameters
in the widget descriptor. However, it is expected that more
often, it will be desirable to provide some additional types
of information to the server as part of the content request.
For example, in some circumstances the parameters might
include one or more parameters that indicate the originating
source of a request such as the associated wrap, card or
widget component identifier(s); a user or system ID; the
geographic location of the user, etc. Other parameters might
be variables that provide information about the user (e.g.
user demographic information), the current wrap viewing
state, and/or information inputted or selected by the user, etc.
Such information may be available from a variety of differ-
ent sources, as for example: (i) a cookie associated with the
wrap; (i) the runtime viewer; (iii) a wrap state descriptor
associated with the wrap and user; etc. Still other parameters
may convey information that is particularly relevant to the
widget. For example a Pinterest widget may identify specific
pins, hosts, boards or tags of interest for the particular
Pinterest card; a shopping cart widget may convey informa-
tion identifying the user’s identity, account number, ship-
ping/billing address, items selected for purchase, credit card
information, etc. It should be appreciated that these are just
examples and that the parameters may be configured to
provide whatever information is relevant to the specific
widget.

In the embodiment illustrated in FIG. 6F, the widget
definition includes a unique widget ID 121 that is distinct
from the component ID 88W. The widget 1D is optional, but
can be useful to identify a widget class or object that is used
to create the component. This is particularly useful from an
object oriented programming and tracking standpoint in that
a particular class/object may be utilized in multiple different
widgets and the use of a widget 1D allows the base class to
be explicitly identified within the widget descriptor.

The content and functionality provided by a widget is
only limited by the imagination of the widget author. By way
of example: a Twitter widget can be configured to render a
Twitter feed and facilitate Twitter services; a chat widget can
be configured to provide a chat service; a countdown widget
can be configured to provide a timer-like functionality; a live
sports score widget can be configured to display sports
scores in real time; a receipt widget can be configured to
interact with a company’s backend financial systems to
provide purchase receipts; a purchase transaction widget can
be configured to facilitate purchase transactions; cul-de-sacs
can be implemented using a cul-de-sac widget; a stock
widget can be configured to display stock prices and/or
support trades etc. The specific parameters that may be



US 9,460,228 B2

41

useful for each of these widgets may vary dramatically with
both the widget’s purpose and its particular implementation.

A representative JSON card descriptor 46 that includes a
widget descriptor 118 is provided in Appendix IV of incor-
porated U.S. Provisional Patent Application No. 62/210,585.
The corresponding card 716 is shown in FIG. 26. The widget
in the illustrated card is a Date Countdown widget. That is,
it provides a counter 791 arranged to show the time remain-
ing until a specified date/time. In the illustrated card 716, the
specified event is the Dreamforce conference and the count-
down counter 791 is arranged to display the time remaining
until the conference begins. For clarity, some of the com-
ponents in Appendix IV are labeled with reference numbers
corresponding to the Figures.

The widget descriptor 118 illustrated in the Appendix IV
begins at page 6 of the Appendix and includes a component
type 89W (i.e. type widget), a component Id 88W, a com-
ponent name 84 (i.e., “widget”) and a number of attributes
86 (labeled “styles” in the Appendix IV). The widget defi-
nition 120 appears on page 8 of the Appendix IV. As seen
therein, the widget definition includes a widget ID 121; a
widget name 122 (i.e., Date Countdown); a definition
(schema) 124 that includes the frame width 127, frame
height 128, source identifier (i.e., iframeUrl:) 126 and a set
of three parameters 130. The illustrated parameters include
the end date 131 (i.e., the date/time that is being counted
down to), an optional message 132 and a time zone 133. The
time zone 133 indicates the time zone associated with the
end date/time. The message 132 is other information to be
transmitted to the wedge server. These parameters are used
by the widget server to help determine the specific content
to be loaded into the iframe reserved for the widget in card
716.

In another particular example, a representative, nonexclu-
sive, widget descriptor suitable for presenting a Pinterest pin
may have the following structure:

Component Type: Widget
Component ID: <UUID>
Component Attributes:
Widget Type:
ID: <UUID>
Name: Pinterest Widget
Schema:
iframeURL: https://pinterest.com/wrap_ widget_ server/
width: #
height: #
Parameters:
PinID: <pin #1>
PinID: <pin #2>
*

(89W)
(88W)
(86W)

@21
(122)
(124)
(126)
127
(128)
(130)

*

In this example, component is of type widget (89W), and
has a universally unique component identifier (88W). Any
desired component level styles or other attributes are asso-
ciated with the component through component attributes
86W. The widget includes a universally unique widget
identifier 121 and a name (Pinterest widget) 122. The widget
definition 124 includes the source 126 from which the
contents associated with the widget are to be obtained
from—specifically, the URL  https://pinterest.com/
wrap_widget_server/ and the parameters 130 to be sent to
the widget server. In the example above, the only parameters
specifically shown are the Pin Ids of interest. The Pin Ids are
used by the widget server to identify the particular Pinterest
pin(s) to be transmitted to the wrap. In the illustrated

10

15

20

25

30

35

40

45

50

55

60

65

42

example, two pins are shown although it should be appre-
ciated that any number of pins and/or other relevant param-
eters may be included.

To illustrate a few additional uses of widgets, consider
some features that a retailer might wish to include in a wrap
to facilitate transactions. In some circumstance it may be
desirable to include a short term “specials” card (e.g.,
“today’s special(s)”, this week or month’s special(s), the
“blue light” special, “clearance” items, etc.). A potential
problem with special cards is that the card’s contents will
become stale relatively quickly. This drawback can be
addressed in part by frequently putting out new wraps with
fresh content. While wraps with fresh content are usually
desirable, older versions of the wrap may still be circulating
which doesn’t eliminate the problem. Another potential
approach would be to periodically update the wrap. This can
be accomplished, for example, by updating the wrap (and
thus the wrap descriptor) periodically such that a different
(i.e., modified) descriptor is delivered in response to the
same wrap request (e.g., by clicking on the same cover).
However, such an approach is often disfavored and it doesn’t
solve the problem with respect to copies of the wrap
descriptor stored at away from the wrap server.

Another approach is to utilize a widget in the “specials”
card. In this example, an iframe is created within the specials
card and the contents for the card may be delivered directly
to the card at runtime by the merchant’s server (e.g., a web
server). Thus, the desired content of the specials card can be
updated by the merchant at any time simply by updating
servers it controls, and such updates are immediately applied
to any wrap that is instantiated after the update is made
without requiring the generation or use of a new descriptor.
When desired, the widget in a “specials” card can be
configured as a gallery (i.e., a gallery widget) so that the
resulting card has an appearance that is similar to a gallery
card. Gallery widgets can also be used to present frequently
updated items like catalog items so that it is not necessary to
update the wrap each time items are added or deleted (e.g.,
each time an item is added to or deleted from the catalog).

Transaction Handling Using Widgets

Referring next to FIG. 8 A-8H, a widget based approach
for in-wrap transaction handling will be described. The
illustrated example is a shopping purchase transaction.
Although particular card layouts and functionalities are
shown and described, it should be appreciated that these
features are merely illustrative of a very specific example
and that virtually any desired card based functionality and
presentation could be provided in their place.

FIG. 8A reproduces the first page of gallery card 316 as
shown in FIG. 7F. In this embodiment, trigger 340 is
arranged to link the user to another card 321 within the wrap
(e.g., wrap 310) rather than to an external web page.
Therefore, when the user presses the “Buy Now” button 327
on card 316 (or any other portion associated with trigger
340), the wrap transitions to an associated shopping card 321
as illustrated in FIG. 8B, which facilitates the beginning of
the purchase process.

In the embodiment illustrated in FIG. 8B, the card
descriptor associated with the shopping card 321 includes a
widget descriptor 118 that indicates that the internal frame
occupies the entire card. The widget descriptor also identi-
fies the source 126 for the card content—in this case a
transaction server. Thus, the entire content of card 321 is



US 9,460,228 B2

43

dictated by the transaction server. The card may contain
links which can then provide new information to be rendered
in the internal frame.

In the illustrated embodiment, the content of shopping
card 321 contains product information 403, a quantity selec-
tor 405, and Add to Cart button 407, a Proceed to Checkout
409 button, a navigational link 411 for continued shopping
and a cart icon 413. The product information 403 provides
some information about the selected product and may take
any suitable form. In the illustrated embodiment, an image
and textual description is provided. The quantity selector
405 allows the user to select the number of units of the
displayed product that the user would like to purchase. User
selection of the Add to Cart 407 button adds the selected
item (including the quantity purchased) to a list of purchased
items which is graphically indicated to the user by incre-
menting the number shown in the cart icon 413. This change
in cart icon state can be seen by comparing FIG. 8B, which
shows the cart icon prior to adding an item to the card and
FIG. 8C, which shows the cart after adding an item. Any
changes in the card’s state, such as updating the quantity 405
and/or the cart 413, would typically be sent back to the
transaction server using appropriate APIs, although in other
embodiments, such changes can be stored locally in asso-
ciation with the wrap until the purchase process is com-
pleted. Navigational link 411 includes the text “Continue
Shopping”. When selected, the navigational link 411 returns
the user to the card 316 from which they began or some other
card within the wrap.

To complete a transaction, the user selects the “Proceed to
Checkout” button 409. The transaction can then be com-
pleted in a number of ways. In some embodiments, selection
of Proceed to Checkout triggers a Cul-de-sac to a website at
which the transaction is completed (e.g., to the vendor’s
website or other suitable location). This allows the vendor to
make use of their existing purchase transaction infrastruc-
ture. However, in other embodiments, it may be desirable to
complete the transaction within the widget itself. A repre-
sentative but nonexclusive widget based approach is
described below with reference to FIGS. 8D to 8H.

In the illustrated widget based approach, selection of
“Proceed to Checkout” button 409 triggers a link that causes
the transaction server to serve new content to the iframe
which is diagrammatically illustrated as Order Summary
frame 322 as shown in FIG. 8D. In the illustrated embodi-
ment, the Order Summary frame 322 summarizes the items
in the shopping cart and provides mechanisms by which the
user can enter additional information relevant to the pur-
chase (e.g. a Promo Code), cancel the transaction, or return
to shopping by selecting button 411.

Selection of the “Continue to Checkout” button 418,
causes the transaction server to serve new content to the
iframe which is illustrated as the Billing Information frame
323 as shown in FIG. 8E. The Billing Information 323
provides text entry boxes for inputting the buyer’s billing
information. In various embodiments, the information can
be entered manually or automatically using an auto-fill
function as is well known in the art.

Once the user billing information is entered, the user may
continue to the—Shipping Information frame 324 seen in
FIG. 8F by selecting the “next” icon 417.

Similarly, once the required shipping information is
entered, manually or automatically using auto-fill, into the
text entry boxes on the Shipping Information frame 324,
then the user may transition to the Purchase Summary frame
325 seen in FIG. 8G. Selecting the “Complete Order” button
419 on Purchase Summary frame 325 commits the purchase,

10

15

20

25

30

35

40

45

50

55

60

65

44

causing the order to be transmitted to the vendor shopping
platform where it is processed and a receipt is returned to the
user and displayed in Receipt Confirmation frame 326 as
seen in FIG. 8H.

In still other implementations, stored user information can
be auto-filled into the various frames. It can be imagined that
the desired frame sequences may vary significantly based on
both the current state of a particular frame and what persis-
tently stored user information is available to the wrap.

The ability of a wrap designer to provide content and
functionality directly into a wrap from an external source
gives the wrap designers a powerful tool for both updating
wrap content and integrating a wide variety of different
services into a wrap.

Maintaining State Information

In many circumstances it may be desirable to transitorily
or persistently maintain state information associated with a
user and/or state information associated with a wrap 10.
Some information, such as general information about the
user, may be shared state information that is relevant to a
number of different wraps. Other state information may be
specific to a particular wrap (e.g., a particular user selection
or input within a wrap, etc.). Still other relevant state
information can be more global state information that is
relevant to all instances of a particular wrap independent of
the specific user.

State information can be stored in a number of ways and
the appropriate storage techniques will vary in part based on
the nature of the state information. By way of example,
general information about a user and other user specific
shared state data can be maintained in a cookie, or when the
user has a persistent viewer application, the user state
information can be persistently stored locally in association
with the viewer application. If desired, any or all of the
shared state information can also be stored on the server
side. The shared state information may be useful to support
a wide variety of different services including: user login
and/or authentication; e-commerce applications where the
identity, contact info, mailing address, credit card informa-
tion etc. of the user may be necessary; integration with other
applications (e.g. a calendar application, a chat application,
etc.); and many other services. User specific shared state
information can also be used to affect the navigation within
a wrap. For example, user demographic information can be
used to determine which card to display next in a set of
cards.

There are also a variety of circumstances where it will be
desirable to persistently maintain state information about the
state of a particular wrap. For example, if a card includes a
dialog box that receives a user selection or a textual input,
it may be desirable to persistently store such selections/
inputs in association with the wrap itself so that such
information is available the next time the wrap is opened by
the same user (or same device).

In a nonexclusive embodiment, a state descriptor 68 is
created and used to maintain state information associated
with a particular wrap as illustrated in FIG. 5B. The state
descriptor 68 is associated with both a specific wrap and a
specific user and thus can be used to store state information
relevant to that specific user’s interaction with the wrap.
When persistent state descriptors are used, the state descrip-
tor 68 may be stored with the wrap on the publication server
22. When the user has a persistent viewer application, the
state information can additionally or alternatively be stored
locally in association with the viewer application either in



US 9,460,228 B2

45

the state descriptor form or in other suitable forms. Gener-
ally, a state descriptor 68 will include a wrap ID 42 and a
user 1D that identify the wrap and user that the descriptor is
associated with respectively. The state descriptor 68 also
stores the relevant state information in association with the
card and component IDs for which the state information
applies.

In certain embodiments, it may also be desirable to
synchronize different instantiations of state information,
depending on the where the state information is stored. For
example if a user updates their credit card or shipping
address information at a publication server 22, then the
corresponding state information residing within any particu-
lar wraps associated with the user, or within a persistently
stored wrap viewer residing on a communication device
belonging to the user, would preferably automatically be
updated. Conversely, any state information locally updated
within a wrap and/or a persistently stored viewer would also
selectively be updated in any other instantiations of the state
information, such as but not limited to, other wraps, publi-
cation servers 22, on a network, or any other remote data
processing location for example.

Transaction Handling

Referring again to FIG. 8 A-8H, a card based approach for
in-wrap transaction handling will be described. The illus-
trated example is a shopping purchase transaction. Although
particular card layouts and functionalities are shown and
described, it should be appreciated that these features are
merely illustrative of a very specific example and that
virtually any desired card based functionality and presenta-
tion could be provided in their place. It should be appreci-
ated that the card based approached described herein can be
used to create the same appearances as the widget based
approach previously described. Thus, the same figures are
used for this explanation.

FIG. 8A reproduces the first page of gallery card 316 as
shown in FIG. 7F. In this embodiment, trigger 340 is
arranged to link the user to another card 321 within the wrap
(e.g., wrap 310) rather than to an external web page.
Therefore, when the user presses the “Buy Now” button 327
on card 316 (or any other portion associated with trigger
340), the wrap transitions to an associated shopping card 321
as illustrated in FIG. 8B, which facilitates the beginning of
the purchase process.

In the embodiment illustrated in FIG. 8B, the shopping
card 321 contains product information 403, a quantity selec-
tor 405, and Add to Cart button 407, a Proceed to Checkout
409 button, a navigational link 411 for continued shopping
and a cart icon 413. The product information 403 provides
some information about the selected product and may take
any suitable form. In the illustrated embodiment, an image
and textual description is provided. The quantity selector
405 allows the user to select the number of units of the
displayed product that the user would like to purchase. User
selection of the Add to Cart 407 button adds the selected
item (including the quantity purchased) to a list of purchased
items which is graphically indicated to the user by incre-
menting the number shown in the cart icon 413. This change
in cart icon state can be seen by comparing FIG. 8B, which
shows the cart icon prior to adding an item to the card and
FIG. 8C, which shows the cart after adding an item. The
changes in the card’s state would typically be stored locally
in association with the wrap until the purchase process is
completed, although in other embodiments, such changes
can be immediately communicated to a vendor’s shopping

10

15

20

25

30

35

40

45

50

55

60

65

46

platform using appropriate APIs. Navigational link 411 is a
trigger that includes the text “Continue Shopping”. When
selected, the navigational link 411 returns the user to the
card 316 from which they began or some other card within
the wrap.

Selection of “Proceed to Checkout” button 409 causes the
wrap to transition to Order Summary Card 322 as shown in
FIG. 8D. Alternatively, a left swipe gesture from Shopping
Card 321 will also cause the wrap to transition to Order
Summary Card 322. In the illustrated embodiment, the
Order Summary Card 322 summarizes the items in the
shopping cart and provides mechanisms by which the user
can enter additional information relevant to the purchase
(e.g. a Promo Code), cancel the transaction, or return to
shopping by selecting button 411.

Swiping to the left on the Order Summary Card 322, or
selection of the “Continue to Checkout” button 418, causes
the wrap to transition to the Billing Information Card 323 as
shown in FIG. 8E. The Billing Information card 323 pro-
vides text entry boxes for inputting the buyer’s billing
information. In various embodiments, the information can
be entered manually or automatically using a auto-fill func-
tion as is well known in the art.

Once the user billing information is entered, the user may
transition to the next card—Shipping Information Card 324
seen in FIG. 8F by either swiping left or selecting the “next”
icon 417.

Similarly, once the required shipping information is
entered into the text entry boxes on the Shipping Informa-
tion Card 324, then the user may transition to the Purchase
Summary Card 325 seen in FIG. 8G. Selecting the “Com-
plete Order” button 419 on Purchase Summary Card 325
commits the purchase, causing the order to be transmitted to
the vendor shopping platform where it is processed and a
receipt is returned to the user and displayed in Receipt
Confirmation Card 326 as seen in FIG. 8H.

Each of the user buttons 327, 407, 409, 417, 418, 419 as
well as links 411 may be implemented as triggers. In
circumstances where the object of the trigger is to link to
another card, then the link associated with the triggers is
simply the target card. Where other functionality is required,
the trigger can initiate the desired action(s) and also link to
a target card if appropriate.

It should be appreciated that it may be desirable to define
somewhat different card transition behaviors for different
cards in the shopping purchase sequence. For example, a left
swipe on Receipt Confirmation Card 326 (FIG. 8H) may be
arranged to return the user to the card from which the
purchase sequence began—i.e., Gallery Card 316 (FIG. 8A)
or some other location within the receipt deemed appropriate
by the wrap author. It may be desirable for a right swipe on
Receipt Confirmation Card 326 to cause a transition back to
the Purchase Summary Card 325 but to have the state of the
Purchase Summary Card 325 changed to provide an “Order
Submitted” message in place of Complete Order button 419.

The desired behavior of Purchase Summary Card 325
may be more complex. For example, when the Purchase
Summary Card 325 is in the state shown in FIG. 8G (i.e., the
purchase order has not yet been committed), it may be
desirable to have a right swipe transition the wrap back to
Shipping Information Card 324 and to disable a left swipe
since the author may not want to commit a purchase trans-
action without an affirmative selection of the “Complete
Order” button by the user. Conversely, when the Purchase
Summary Card 325 is in the “Order Submitted” state (not
shown), it may be desirable to allow the user to left swipe
back to the Receipt Confirmation Card 326, whereas a right



US 9,460,228 B2

47

swipe might transition the wrap back to the Gallery Card 316
(FIG. 8A), where the purchase sequence began, or some
other predetermined landing card. In still other implemen-
tations, the right swipe could be disabled if desired. Regard-
less of the desired card transitioning behavior, the desired
behavior can readily be defined using the behavior defini-
tions described above. Importantly, the behavior definitions
can also take the current state of the cards into the account
in determining the card transition logic. It should be appar-
ent that any of the described cards can be arranged to interact
with vendor e-commerce websites (e.g., Shopify APIs),
back-end e-commerce systems, platforms and the like.

In the embodiment illustrated in FIGS. 8A-8H, the pur-
chase of a product is accomplished through a series of
sequential cards designed to illicit from the viewer the
information necessary to complete the electronic transac-
tion. In an alternative embodiment, the content of these
cards, including the various data entry fields, can also be
implemented in one or more gallery cards. In such embodi-
ments, the viewer would be required to scroll up and down
the gallery card(s) and enter the appropriate information in
the displayed data entry fields.

In the illustrated card deck, Order Summary Card 322 and
Purchase Summary Card 325 are described as separate
cards. It should be appreciated that the functionality of these
two cards could be implemented as a single card shown in
two different states, with the Order Summary state (e.g., the
state shown in FIG. 8D) being shown when purchaser
information is still missing and the Purchase Summary state
(e.g., the state shown in FIG. 8G) being shown when all
needed purchaser information is present.

A potential advantage of using an installed or native wrap
package application based viewer is that user information
can be securely stored within the viewer and, if desired,
automatically associated with the order as appropriate,
thereby potentially eliminating the need to render the Billing
and Shipping Information Card 323, 324.

In still other implementations, the stored user information
can be auto-filled into the various cards. It can be imagined
that the desired card sequences may vary significantly based
on both the current state of a particular card and what
persistently stored user information is available to the wrap.
The ability to simply select/declare a desired behavior from
a palette of predefined card behaviors give card authors (and
template designers) a powerful tool for providing complex
card behaviors without requiring the authors to learn or
understand the intricacies of card navigation programming.
Rather, system designers can define a number of card
behaviors that are believed to be useful, and any of those
predefined behaviors can be used by the template designers
and card authors. If new card behaviors are desired, they can
readily be written and added to the card behavior definitions
60.

Serving a Wrap Package

There are a number of items associated with defining and
rendering a wrap package. These include the wrap descriptor
40, the wrap runtime viewer 50, the referenced assets 65,
and when appropriate, the behavior extensions 62 and/or
state descriptor 68. On the wrap server side, these items may
be stored in any arrangement that is deemed appropriate for
securely delivering the various items in an efficient manner.

Conceptually, the various wrap items may be thought of
as being stored separately from one another as illustrated in
FIG. 9A. By way of example, these may include one or more
of each of: a wrap package descriptor store that stores wrap

20

30

40

45

55

48

descriptors 40; a wrap viewer store that stores the runtime
viewer(s) 50; a state descriptor store that stores the state
descriptors 68, an extensions store that stores extensions 62;
and an assets store that stores assets 65. In various embodi-
ments, it is understood that the assets 65 used to populate
wrap packages 10 may be obtained from any available
source and there is no requirement that all of the assets be
contained or included in a single store.

Although the various stores are shown separately for
emphasis, it should be appreciated that their respective
functionalities can be combined into one or more physical
store(s) in the same or different locations in any desired
manner. Furthermore, each of these store items is discretely
cacheable both on the network side and on individual
devices.

In non-exclusive implementations, the wrap distribution
environment as depicted in FIG. 9A may be configured as a
Content Delivery Network (CDN), meaning that servers and
stores are deployed at different data centers across the
Internet. As a CDN, the wrap distribution environment is
preferably optimized to serve various wrap packages to a
large numbers of users with minimal delays.

In the wrap descriptor framework described above, much
of the actual content of the cards (e.g., assets 65) is main-
tained outside of the wrap descriptor 40. That is, many, most
or all of the wrap package’s assets are referenced within the
wrap descriptor 40 rather than being stored within the
descriptor 40. Thus, the wrap descriptor 40 can be quite
small even for large wraps that are rich in media content. As
a result, the wrap package (i.e., the wrap descriptor 40) can
be quickly downloaded while still providing the viewer with
a full description of the entire wrap structure. This separa-
tion of assets from the descriptor helps make wrap packages
highly portable.

An asset 65 referenced by a card 14 of a wrap 10 assets
can be downloaded to the consuming device 12 using any
desired scheme. By way of example, in some scenarios, the
assets 65 associated with any particular card 14 can be
downloaded on an “as needed” basis, only when the card is
to be displayed or is expected to soon be displayed. In other
scenarios various caching schemes can be use, whereby the
assets associated with nearby cards are downloaded while a
given card is displayed. In still other scenarios the down-
loading of some, or all, of the wrap package assets is begun
shortly after the wrap descriptor is received and, when
necessary, other assets are downloaded on an as needed or
other appropriate basis.

Referring next to FIG. 9B, another embodiment of an
environment for the creation and distribution of wrap pack-
ages will be described. The environment includes one or
more of each of wrap descriptor server/store 140, runtime
viewer server/store 150 and asset stores 165. A browser 151
or runtime viewer app running on a communication device
12 communicates with the server/stores through an appro-
priate network (e.g., the Internet), which is preferably con-
figured as a content delivery network CDN. The runtime
viewer server/store 150 is arranged to store and deliver the
runtime viewer 50, a store 162 of extensions 62 and/or a
shim 400 (described later) upon request. That is, requests for
the runtime viewer 50, extensions 62 and shim 400 are
directed towards and fulfilled by the runtime viewer server/
store in the illustrated embodiment.

The wrap descriptor server/store 140 is arranged to store
and deliver upon request the wrap descriptors 40, state
descriptors 68 and any other personalization information 69
relevant to a particular user. Thus, requests for specific wrap
descriptors 40, state descriptors 68 and any other personal-



US 9,460,228 B2

49

ization information 69 are directed towards and fulfilled by
the wrap descriptor server/store 140. The state descriptor
store(s) 168 and personalization store(s) 169 may be con-
tained within the wrap descriptor server/store 140. When
desired, multiple different wrap descriptors server/stores 140
may be used and/or the state descriptors 68 and/or person-
alization information 69 can be stored and delivered from
other locations.

As previously mentioned, the assets 65 may be stored at
a wide variety of different locations as diagrammatically
represented by asset stores 165. Wrap authoring tools 35,
management tools 37 etc. can also communicate with wrap
descriptor server/store 140 and asset stores 165 as appro-
priate. The authoring tools may access existing wrap
descriptors 40 to facilitate new wrap creation, wrap mixing
and/or wrap editing (when permitted). The authoring tools
would also access the wrap descriptor server/store 140 to
upload new wrap descriptors, etc. Similarly, assets stores 65
may be accessed and/or added to as part of the wrap creation
process. Similarly various management tools 37 may be
arranged to communicate with the various stores to facilitate
any desired management, tracking and other functionality.

Referring to FIG. 10, a representative process suitable for
delivering wrap packages is described. In the illustrated
embodiment, a server (e.g., publication server node 22 or
runtime viewer server/store 150) initially receives a request
for a particular wrap package 10 (step 190). In embodiments
in which the wrap ID 42 is a URL, the request can be
invoked at a requesting device 12 simply by activating (e.g.,
clicking on or otherwise selecting) a link that contains or
otherwise defines the URL. Thus, the wrap 10 can be
accessed from virtually any platform capable of accessing a
web link. As previously discussed, a cover that represents
the wrap may include the wrap ID URL and thus the request
can be invoked by simply clicking on a cover which may be
embedded in a web page or an ad served in conjunction with
a web page, embedded in a messages, such as an email, a
text or SMS message, embedded in a Twitter tweet, or may
be included with any other delivery mechanism that supports
the embedding of a link.

When the server receives the request it identifies and
fetches the desired wrap package 10 based on the wrap ID
42, contained in the target URL (step 192). The server also
determines the run-time environment on the requesting
device (step 194). This can be accomplished using standard
bootstrap queries to the requesting device 12. The determi-
nation of the run-time environment will typically include an
identification of the type or class of the requesting device 12
and viewing software, such as the operating system of the
device 12 and/or a particular browser that the device 12 may
be using. For example, the determination would typically
ascertain the particular model of the requesting device (e.g.,
an Apple iPhone 6 Plus, a Samsung Galaxy S4, or other
particular smart phone, tablet, laptop computer, desktop
computer, smart watch, etc.) and the version of the software
(e.g., browser or app) that is making the request, etc., and
whether or not the requesting device has an installed wrap
viewer or not. Of course, the server can also ask the
requesting device for any additional information considered
useful.

A determination is also made regarding whether a runtime
viewer is already present on the requesting device (step
196). If a suitable viewer is present on the requesting device
(e.g., the device has a wrap viewer app installed thereon or
a browser based viewer is already present on the device), the
requested wrap is delivered without a viewer in step 197.

5

10

15

20

25

30

35

40

45

50

55

60

50

Alternatively, if a viewer is not present on the device, an
appropriate run-time viewer 50 is delivered together with the
requested wrap in step 198.

The delivered wrap package 10 is opened and consumed
by the user on the device 12 via either a browser operating
in cooperation with a wrap viewer 50 or the wrap package
app. In either case, the layout of the cards 14 is customized
for display on the screen of the requesting device 12. Once
opened, the user can view, experience and interact with the
wrap package 10 as intended by the author.

Regardless of whether the wrap viewer 50 is already
present on the requesting device or is supplied together with
the wrap 10, the presentation tools 55 are responsible for
rendering the wrap 10 in a format suitable for the requesting
device. Thus, when the wrap 10 is rendered, all of the
content of the card(s) 14 is preferably arranged to fit on the
display screen without the user needing to manually size the
screen or scroll through the card, unless the card is specifi-
cally designed for scrolling such as may be the case with a
gallery type card. This can be done because the presentation
tool 55 knows the screen dimensions for the rendering
device 12 and selects the presentation that is optimized for
the particular display on the requesting device 12.

In a nonexclusive embodiment, the browser based ver-
sions of the run-time wrap viewer 50 may be written in a
widely accepted format that can be executed by general
purpose browsers operating on most any device. By way of
example, JavaScript currently works well for this purpose,
although other frameworks may be used as well. In some
embodiments, the viewer 50 is a general purpose viewer that
includes many, most, or all of the viewer tools and behavior
definitions 60 that are available in the wrap ecosystem so
that virtually any wrap can be viewed and all of its featured
implemented using the accompanying viewer. In other
embodiments, it may be desirable to provide a more compact
viewer that includes a basic set of viewer tools and behavior
definitions that is suitable for rendering and interacting with
most wraps, or a basic set accompanied by any additional
tools/behavior definitions that deemed necessary to render
and/or interact with the specific wrap delivered.

It is anticipated that as the popularity of wrap packages
increases, more users will install wrap viewers on their
devices in the form of mobile apps, applications, browser
plug-ins, etc., which is expected to reduce the proportion of
wrap requests that require run-time delivery of a browser
based viewer.

Referring next to FIG. 11, an alternative, browser based
process for requesting, delivering and rendering wrap pack-
ages will be described. This embodiment is well suited for
use with the multi-tier wrap engine architecture of FI1G. 9B.
In this embodiment, the runtime instance of the wrap pack-
age is constructed locally at the requesting device based on
the wrap descriptor at runtime. Such an approach may have
several potential efficiency related advantages over the pro-
cess described with respect to FIG. 10 including supporting
simpler wrap caching strategies.

Initially, in step 202, a browser 151 on a requesting device
12 requests a particular wrap package 10 using the wrap 1D
42. As previously described, in embodiments where the
wrap 1D 42 is a URL, the request can be invoked at a
requesting device 12 simply by activating (e.g., clicking on
or otherwise selecting) a link that contains or otherwise
defines the URL. Thus, the wrap 10 can be accessed from
virtually any platform capable of accessing a link. In the
embodiment of FIG. 9B, this request is directed to the



US 9,460,228 B2

51

runtime viewer servet/store 150, although in other embodi-
ments, the same function can be performed by wrap server
node 22.

When the runtime viewer server/store 150 (wrap server
node) receives the request, it returns a generic HTML shim
400 to the requesting device 12 (step 204) rather than
directly returning the requested wrap at this stage. The shim
opens into a page (e.g., a blank browser webpage) that will
be populated with the wrap and includes scripts suitable for
initiating the process of accessing and rendering the
requested wrap package 10.

By way of example, FIG. 13 illustrates a nonexclusive
embodiment of a shim 400 suitable for use for this purpose.
The primary function of the illustrated shim 400 is to
provide a mechanism for calling the runtime viewer 50. This
is accomplished by script tag 1402 in the illustrated embodi-
ment. Thus, the shim 400 ensures that the requesting device
has, or obtains a runtime viewer suitable for handling the
wrap before the wrap is actually delivered.

In a non-exclusive embodiment, the shim is implemented
in HTML code that is delivered to a browser in step 204 in
response to a wrap request 202. As can be seen in FIG. 13,
the shim 400 is a highly compact. It includes a script tag
1402, a default page title 1403, a style sheet 1405 that
defines the initial layout of the page that will hold the wrap,
an icon image 1407, and a div 1409. The script tag 1402 is
primarily responsible for requesting the runtime viewer 50.
The default page title 1403 is the label that is typically
displayed in the browser tab associated with the blank
window page that the wrap is opened into (the page title
1403 is simply “wrap” in the illustrated embodiment). The
style sheet 1405 defines the layout of the page that is initially
displayed, which is essentially blank at the initial stage. In
the illustrated embodiment, CSS is used to define the page
layout, although any other layout definition that can be
interpreted by the browser can be used. The icon image 1407
is an image that some browsers display in the browser tab
adjacent the title. The div 1409 causes the browser to allow
the runtime viewer to rewrite the DOM for the page starting
from that defined div node.

Returning to FIG. 11, the browser that receives the shim
400 will typically handle the runtime viewer request by first
checking to see whether an appropriate runtime viewer 50 is
already present on the device (step 206). If so, the runtime
viewer 50 is launched in step 212. If a suitable runtime
viewer is not already present on the requesting device, a
suitable viewer is requested and delivered to the requesting
device (steps 208/210) and launched by the browser (step
212). In the embodiment of FIG. 9B, the runtime viewer
request is also directed to runtime viewer server/store 150.

The downloaded runtime viewer may be written in a
format that can be executed by most browsers so that the
same generic runtime viewer may be used to view any wrap
on virtually any computing device that contains a general
purpose browser. By way of example, JavaScript is a
dynamic programming language that is currently well sup-
ported by most browsers, and is therefore, well suited for use
in the runtime viewer. Of course, other now existing of later
developed programming languages and frameworks may be
used in other embodiments.

Once the runtime viewer 50 launches, it requests the wrap
based on the wrap ID 42 used in the initial request. In a
non-exclusive embodiment, the request may take the form of
WRAPL.WRAP.CO/WRAP/<WrapID>, where <WraplD>
is the wrap ID 42. In response, the browser or viewer will
typically check to see whether the wrap descriptor 40
corresponding to the wrap ID 42 is available locally (step

25

40

45

55

60

52

213). If not, the wrap descriptor 40 is requested from and
returned by the wrap descriptor store 140, as represented by
steps 214, 216.

In embodiments where the initial wrap request comes
from an executing runtime viewer (as for example from a
native viewer app), then there would be no need for steps
204-212 and the initial wrap request 202 would initially
check for the requested wrap descriptor locally (step 213)
and proceed from there.

Once the wrap descriptor 40 is received, it is processed by
the runtime viewer 50 resulting in the construction and
rendering of the wrap in the browser page associated with
shim 400. Some of the steps performed or caused by the
runtime viewer 50 as it processes the wrap descriptor 40 are
schematically represented as elements 218-234 in the flow
chart of FIG. 11. Although a particular flow is illustrated, it
should be appreciated that the described steps are functional
in nature and are not necessarily performed in the illustrated
order.

While processing the wrap descriptor 42, the runtime
viewer 50 determines whether the wrap package 10 has an
associated state descriptor 68 (step 218). As discussed
above, it is contemplated that many wrap packages will not
have an associated state descriptor while others will. A
number of mechanisms can be used to indicate the intended/
expected presence of a state descriptor 68. By way of
example, in some embodiments, the wrap descriptor 42
includes a state descriptor flag (not shown) that indicates
whether a state descriptor 68 is intended to be associated
with the wrap. In such embodiments, the runtime viewer 50
determines whether to request the state descriptor 68 based
on the status of the state descriptor flag. In another example,
wraps 10 that require state descriptors 68 may be arranged
to simple declare the existence of an associated state
descriptor and the runtime viewer may be arranged to
request the appropriate state descriptor. If a state descriptor
68 is intended, it is requested and received as diagrammati-
cally represented by step 220. In the embodiment of FIG.
9B, any state descriptor requests are directed to wrap
descriptor server/store 140, although they may be directed to
wrap server 22 or other suitable stores in other embodi-
ments. Typically, the browser or runtime viewer would first
check to see if the state descriptor is cached or stored locally
before sending a request to the server.

Another step performed by the runtime viewer 50 is
determining if the wrap 10 has any associated behavior
extensions 68. As discussed above, the wrap 10 may have a
number of associated behaviors. The runtime viewer 50 may
internally support many, most or all such behaviors. How-
ever, to help keep the runtime viewer 50 relatively compact
while supporting a wide variety of functionality, the runtime
viewer 50 is configured to support additional extensions 62
that may be utilized to define additional behaviors. Thus in
step 222, the runtime viewer 50 determines whether any
extensions 62 are needed to properly render the current wrap
(step 228). If yes, the needed extensions are requested and
retrieved (step 226). There are a number of mechanisms that
can be used to trigger the extension request(s). For example,
the wrap descriptor 40 may be arranged to identify the
needed extensions 62 such that they can be retrieved as a
group early in the wrap rendering process. In other embodi-
ments, the extensions 62 may be retrieved on an as needed
basis as the descriptor 42 is processed or in any other
suitable manner. In still other embodiments, the required
extensions 62 (which may be written in JavaScript or other
suitable form) may be included as part of the descriptor 42
itself—as for example, in a block after the card descriptors



US 9,460,228 B2

53

or at the end of the descriptor. In such circumstances there
would be no need to separately request the extensions.
Regardless of the embodiment used to retrieve the exten-
sions 62, or if no extensions 62 are needed, the runtime
viewer 50 generates the HTML for the requesting device 12
in step 228. In the embodiment of FIG. 9B, any extension
requests are directed to the runtime viewer server/store 150.

The runtime viewer is arranged to process the wrap
descriptor 40 in a manner that generates the HTML appro-
priate for rendering the wrap on the requesting device (Step
228). This processing is described in more detail below with
respect to FIG. 12.

As part of the processing and rendering, the assets 65
associated with the various cards 14 associated with the
wrap 10 are retrieved in step 230. In many cases, the assets
65 associated with a particular card will be retrieved as their
associated card descriptors are processed during the wrap
descriptor processing. However, it should be appreciated
that the actual timing of the asset requests may be widely
varied. For example, in some circumstances it may be
desirable to only download certain assets 65 when the
associated card is displayed or just prior to the card being
displayed, in accordance within some predetermined cach-
ing strategy. In some embodiments, the runtime viewer 50
determines the timing of the asset requests, while in other
embodiments, such decisions may be delegated to the
browser. As previously discussed, the assets may be stored
at a variety of different locations as diagrammatically illus-
trated as asset stores 165 in the embodiment of FIG. 9B.

As the wrap descriptor is processed, the wrap is rendered
on the requesting device by populating the tab or page
opened by shim (step 234).

In some circumstances the initial wrap request may come
from a runtime viewer that is already open and executing. In
such circumstances it may be desirable for the runtime
viewer to directly request any needed wrap descriptors from
the wrap descriptor storage server (e.g. wrap descriptor store
1040). Such a process would effectively skip described steps
202-212.

Rendering Wrap Packages

Wrap packages are each an abstract, platform-indepen-
dent data structure containing all the information needed for
a wrap runtime engine 50 to render the wrap and facilitate
its interaction and behaviors. Although a non-exclusive
implementation of the wrap runtime is in the JavaScript
programming language for execution within a conventional
web browser using HTML and CSS, the wrap runtime could
also be implemented using other languages and technologies
specific to different operating systems and devices. Since the
runtime engine 50 renders the wrap at the time of consump-
tion, it can optimize the rendering and interface for the
device it is running on as well as dynamically generate
content based on context.

Referring next to FIG. 12, a process of generating and
updating the view of the wrap 10 during rendering is
described. Initially, in step 251, the runtime viewer 50
generates an object graph based on the descriptor 40. The
object graph serves as the state model for the wrap. In the
illustrated embodiment, the wrap descriptor 40 uses the
JSON data format. In general, the object graph is arranged
to represent the structure of the wrap document in a manner
that: (1) is simpler to transform for presentation; and (2) that
makes the behaviors and styling information readily avail-
able for the runtime to apply as needed. The object graph can
be created using a variety of techniques. As will be appre-

10

15

20

25

30

35

40

45

50

55

60

65

54

ciated by those familiar with the art, using JSON objects as
the wrap descriptors makes runtime generation of the object
graph a relatively simple and straightforward task. The
JSON object is transformed into JavaScript objects auto-
matically by the runtime. Then straight-forward transforma-
tions take place to transform the on-disk representation into
a runtime object graph from which it is easier to render the
desired views and attach the desired behaviors.

After the object graph has been built, the runtime viewer
creates a document object model (DOM) based on the object
graph (step 253). The DOM corresponds to the view, and as
will be appreciated by those familiar with the art, the DOM
is a standard representation that may be used directly by the
browser to render the wrap in a conventional manner (step
255). That is, the DOM is an internal representation that can
be directly used by the browser to render the wrap.

Once the DOM has been built, the runtime viewer asso-
ciates the appropriate handlers and navigation tools based on
the current model state (step 258). That is, if the first card is
displayed, the viewer will associate the event handlers and
navigation tools with the wrap that are appropriate for the
first card. These include the handlers associated with triggers
as previously discussed.

Thereafter, when a user input event is received from a user
interacting with the wrap, the appropriate handler processes
the received event. This process is diagrammatically repre-
sented by the event loop that begins at step 260.

When an event is received at 260, an event dispatcher
determines whether there is an active handler that matches
the event (step 262). If so, the event is delegated to the
matching handler (step 264), which determines whether the
event is valid (step 265). If valid, the handler acts on the
event (step 266) and updates the display status of the model
(i.e., the handler updates the state of the object graph model).
In step 268, the view state is then updated as needed based
on the new model state. Any time the view state changes, the
active handlers are updated as necessary based on the new
(i.e., then current) model state (step 269). Thereafter, control
is returned back to step 258 and the above process is
repeated if a new event is received in step 260.

To give a specific example, consider the navigation
behaviors that might be associated with the first card 311 of
wrap 310 illustrated in FIG. 7A. In a simple example, the
only permitted navigational behavior for card 311 may be a
left swipe gesture, which is arranged to flip the displayed to
the second card 312 shown in FIG. 7B. In such a case, when
the first card 311 is rendered and displayed, the only valid
navigational handler associated with the wrap in step 258
would be a left swipe handler arranged to cause the display
status of the model to change to the next card 312 of FIG.
7B in response to a left swipe. In this state, the only time the
event dispatcher will find an active matching handler is
when a left swipe event is detected. Thus when a left swipe
is detected, the event dispatcher would delegate the event to
the left swipe handler (step 264), which is validated in step
265 and acted upon in step 266 by updating the display
status in of the model (i.e., making the next card active—in
this case second card 312)—which in turn will cause the
view state to update to the second card (step 268) and a new
state model in step 269.

As previously discussed, the navigation behaviors for the
second card 312 are somewhat different than the navigation
behaviors for the first card. The left swipe handler remains
the same (i.e., causing a transition to the next card)—
however a right swipe is now relevant and will cause a
transition to the previous card (i.e., back to the first card



US 9,460,228 B2

55

311). Thus, in step 258 and 269, a right swipe handler would
be activated when the model] state transitions to the second
card.

Of course, there may be a wide variety of different
handlers that are appropriate for specific cards and/or model
states. In some circumstances the same gesture may invoke
different behaviors based on the active card or model state.
For example, a left swipe gesture made on the last card may
invoke an animation that gives the appearance of the card
beginning to flip, but then springing back, to graphically
suggest that the displayed card is the last card. To facilitate
this, a final card left swipe animation handler may be
activated when the last card is displayed, whereas the left
swipe page transition handler would be deactivated.

The handlers associated with triggers are also particularly
important to the wrap environment. For example, selection
of a trigger component (e.g., by tapping at any location on
a screen within the bounds of a displayed trigger compo-
nent) may activate the trigger. Of course a wide variety of
different events can be used to activate a trigger. In many
instances, the events will be user initiated events such as
selection or tapping of a trigger through the performance of
a selection gesture or based on some other user input. In
other circumstance, the activating step may system gener-
ated (e.g. an elapsed time, a sensor input that exceeds a
threshold, the receipt of a particular message or a very wide
range of other potential events).

Once activated, a trigger may exhibit any desired behav-
ior which can be associated with the trigger through appro-
priate behavior declarations 95. By way of example, if the
trigger is a linking trigger, the trigger may initiate a navi-
gational link to another card or wrap, or link to an external
webpage once activated using a defined linking behavior
(e.g., open in same tab, open in new tab, etc.) Other triggers
can have a wide variety of different associated behaviors to
support almost any type of application functionality.

Component Model

Wraps are composed of a number of different types of
components and the wrap runtime has rules for handling the
various component types that it is expected (and designed)
to encounter. FIG. 14 illustrates a nonexclusive wrap com-
ponent model suitable for use in the wrap environment. The
component types illustrated in the non-exclusive embodi-
ment of FIG. 14 include containers 580, textbox 582, image
583, video 584, link 586, location 587, widget 588 and feed
589. Some of the component types may have subtypes that
are handled in different ways. There may be a number of
different container types that are handled differently by the
runtime. A container component is generally arranged to
hold other components and different container types may be
used for different purposes. For example, in the illustrated
model, three specific container types are shown, specifically
card 590, gallery 592 and gallery items 594.

The card container type 590 is the standard card container.
As such, the “card” container type 590 has specific dimen-
sions that will be set based on the size of the screen that the
wrap (and thus the cards) is/are intended to be rendered on.
In the primary described embodiments, standard cards are
expected to be rendered in a portrait view that is fully visible
on a screen such that scrolling is not necessary to see the
entire content of the card. It is expected that in many mobile
devices, the card will occupy the full screen (or substantially
all of the screen) in a portrait orientation, whereas in devices
with landscape or other non-portrait oriented display screens
(e.g., most desktop displays, etc), the card would typically

20

25

40

45

55

56

not occupy the entire display screen (e.g., desktop and laptop
displays). Since the card size will vary with the size of the
available display, the runtime has rules that define the card
size for any particular wrap instance based on the size and
aspect ratio of the target screen. By way of example, one
approach to automatically sizing a wrap is described in
application Nos. 62/144,083 and 62/191,079 which are both
incorporated herein by reference.

It is contemplated that the card’s aspect ratio (e.g., the
ratio of card height to card width) will typically be main-
tained the same regardless of the screen size, however, that
is not a requirement, and if desired, the runtime can also
have rules relating to the card’s aspect ratio.

Another container type is gallery 592. As suggested above
a gallery is a special type of card that has the ability to scroll
multiple frames beyond a single screen. Thus, when the
runtime encounters a gallery card container type, it knows to
bestow the gallery card with the desired gallery behaviors as
previously discussed. Galleries are composed of gallery
items and thus another container type is the gallery item 594
which is a component of a gallery. When the runtime
encounters a gallery item, it knows it belongs in an associ-
ated gallery.

A number of other component types relate to other
specific types of content. For example, a textbox component
type is arranged to hold text. Typically, the text would be
included in-line within the descriptor, although that is not a
strict requirement. An image component type is arranged to
hold an image and/or photo. Typically, the associated image/
photo would be obtained by the runtime using a source
identifier (e.g., URL) provided in the image component
descriptor. Alternatively, the image/photo could also be
provided inline as well. A video component type is arranged
to display a video. Like the image, a video is typically
obtained by the runtime using a source identifier (e.g., URL)
provided in the video component descriptor.

The link component type 586 incorporates is a specialty
component that is arranged to link to another location. The
link could be an internal link within the wrap, a link to
another wrap, a link to a website or other designated
location.

The location component 587 is also a specialty compo-
nent that is arranged to provided GPS or other location
functionality, such as maps, driving directions, etc. The
location component 587 can be implemented in a number of
ways, such as by accessing and inter-operating with a
location/GPS app (e.g., Google maps or a similar app) on the
device consuming the wrap, by linking to a remote website
or other designated location providing such services, or via
a widget, as described herein.

The widget component type 588 is used by widgets. As
described above widgets are arranged to open an internal
frame within the associated card. The content of the internal
frame is not defined by the descriptor itself. Rather, the
content is supplied by an external source identified in the
widget descriptor.

The feed component type 590 is used to create feeds. In
various embodiments, the feeds can be either static or
dynamic.

Of course a variety of other component types could be
added, and some of the above component types can be
eliminated, modified or combined. Thus, it should be appre-
ciated that the component type set is extensible so long as
the runtime is configured to handle such components or has



US 9,460,228 B2

57

the ability to obtain the rules appropriate for handling such
components when they are encountered.

Global Components

Up to now, wraps 10 have primarily been described in
terms of a collection of card descriptors 46. Each card
descriptor 46 may include data object(s) representative of
one or more components 16 authored or otherwise associ-
ated with the corresponding card 14. Together, the one or
more components 16 define the structure, content and/or
functionality of the corresponding card 14. With this
arrangement, individual cards 14 can each be imbued with
functionality, content, style(s), attribute(s), trigger(s) and
behavior(s) as intended by the author. In most of the
examples provided above, the characteristics are card spe-
cific. However, when desired, component(s) can also be
associated at the wrap level rather than the card level. When
applied at the wrap level, a component is herein referred to
as a “global” component, meaning the component applies to
either all or some designated subset (i.e., two or more) of the
cards of the wrap. In other words, the same functionality,
content, style(s), attribute(s), trigger(s) and behavior(s) of
global component(s) can be applied to be multiple cards 14
of a wrap 10, without requiring the same component(s) 16
to be authored into each card individually.

Referring to FIG. 28, a representative wrap descriptor 40
with global components for a wrap package 10 is shown. In
this non-exclusive embodiment, the wrap descriptor 40
includes wrap meta data 45 (e.g., wrap name, author, ver-
sion, etc.), a plurality of card descriptors 46 for a collection
of N cards 14 respectively, one or more global component
descriptors 1802 for specifying a global component, and one
or more card designator(s) 1803.

Each card designator 1803 designates the cards 14 of the
wrap for which a corresponding global component descrip-
tor 1802 will apply. In many situations, the default setting
for a card designator 1803 will be inclusive of all the cards
14 of a wrap 10, meaning the corresponding global compo-
nent defined by a descriptor 1802 will be associated with all
of the cards 14 of the wrap 10. Alternatively, the card
designator 1803 may be selectively set to specify only a
group or subset of the cards 14 (i.e. two or more), but not all
of the cards 14. In this latter case, the global component
designated by descriptor 1802 is associated with only those
designated cards. In a non-exclusive embodiment, the
default may be implicit such that if no card designator is
explicitly provided, the global component is applied to all of
the cards 14.

Unlike components 16 that are card specific, global com-
ponents designated by a descriptor 1802 globally imbue
specified function(s), content, style(s), attribute(s), trigger(s)
and/or behavior(s) to all (or some designated subset) of the
cards 14 of the wrap 10, not just an individual card 14.

In the examples provided in FIG. 28, two global compo-
nents descriptors 1802 are provided. The first is a Media
Widget. The second is/are navigational behavior(s). In addi-
tion, card designators 1803 are provided for each global
component respectively. In each case, the designator speci-
fies either all or some subset of the cards of the wrap the
corresponding global components applies. The functionality
imbued by the two global components specified herein are
described below with regard to the provided examples.
Again, it should be understood that these examples are
provided for illustrative purposes only and in no way should
be construed as limiting.

10

15

20

25

30

35

40

45

50

55

60

65

58

Most of the component types discussed above with
respect to FIG. 14 can be used as global components,
although certain component types such as card 590, gallery
592, and gallery item 594 are generally not included as
global components because they are typically card-specific.
As such, the global component types may include, but are
not limited to, containers 580, textbox 582, image/photo
583, video 584, link 586, location 587, widget 588 and feed
589. Although any of the above-listed component type can
be used as a global component, in practice global component
(s) will often be text, an image, and/or a photo, since an
author will most likely want to replicate this type of content
within a plurality of cards 14 of a wrap 10. Whatever the
type, the global component will appear at the same location,
and will have the same style(s) and/or attribute(s), on each
card 14, or designated subset of cards 14, of the wrap
package. For example, an author of a wrap package 10 may
wish to have text and/or a company logo appear at the same
location n each card 14 of a wrap.

Although text, images and photos are the likely candi-
dates, the content of global components are by no means
limited to just these types of media. On the contrary, any
type of media may be designated as a global component,
including video and/or audio.

In addition, other types of components may also be
designated as global components, such as those used for
implementing transactions (i.e., the purchase and/or reser-
vation/booking of goods and/or services), online chats,
GPS/location services, or any other app-like functionality
that can be embedded or otherwise associated with a single
card. In other words, virtually any type of component that
can be included in a single card can also be implemented as
a global component.

In addition, attributes may be associated with the wrap as
a whole rather than with a specific card or component. For
example, a navigational behavior can be associated at the
wrap level to provide the wrap with a specific or custom
navigational behavior.

In the non-exclusive examples provided below, the global
component designated by descriptors 1802 include a media
widget and certain navigational behavior(s). These examples
are provided for illustrative purposes. It should be under-
stood that these specific global components are merely
exemplary and in no way should be construed as limiting. In
real-world embodiments, a wide variety of global compo-
nents may be used as discussed above.

A global component media widget may be implemented
in a number of different ways. For example, the media
widget may be a media player capable of playing audio,
music and/or video streamed from a server associated with
a specified streaming service (e.g., Pandora, Spotity, a radio
station, etc.). Alternatively, the media widget may refer to
and access a specific music, audio and/or video file, or a
library of the same, such as an iTunes playlist, that may
reside either on the same computing device 12 consuming
the wrap or a remote location, such as a server. As a global
component, regardless of how it is implemented, the media
widget enables the functionality of playing of music, audio
and/or video content while all (or a designated group) of the
cards 14 of the wrap 10 are rendered.

Similarly, navigational behavior global components
specify or imbue specified behavior(s) on all (or some
designated subset) of the cards 14 of the wrap.

A further explanation of both the global media widget and
global navigational behaviors is provided with respect to the
non-exclusive examples provided below.



US 9,460,228 B2

59

FIG. 29 shows a global media player widget 1808 appear-
ing within all the cards 14 of a wrap package 10. As
illustrated, the media player 1808 includes a listing of the
name of the artist and song that is playing, audio controls for
playing, pausing, jumping forward and backward, volume
control, etc. As the widget 1808 is global, the player will
appear on all the cards 14 of the wrap 10 during consump-
tion, regardless of the given card 14 that is currently
rendered at any given point in time. As a result, the viewer
will be able to play access to the media player and control
the playback of media from any card 14 in the wrap.

FIG. 30A shows a global audio widget 1810 appearing on
all of the cards 14 of another wrap package. In this particular
example, the audio widget 1810 is an image of a speaker that
appears on the lower right corner of each card 14. The global
audio widget 1810, in this example, is also imbued with a
specific global navigational behavior that is invoked in
response to a designated trigger. In this illustrative example,
when the audio widget 1810 is swiped upward (as repre-
sented by the arrow 1812), regardless of the card 14 that is
currently being rendered, a pop-up music playlist 1814
overlay appears on the currently displayed card 14, as shown
in FIG. 24B. By selecting a particular song name, the
corresponding track will play. In variations of this embodi-
ment, once the pop-up overlay 804 is invoked, it may appear
on all of the cards 14 as they are swipe navigated. Alterna-
tively, the pop-up overlay may appear only on the originat-
ing card 14 and will go away when a swipe to another card
occurs. In the latter case, the viewer would be required to
again swipe the audio widget 1810 on another card 14 for the
overlay 1814 to again appear.

FIG. 31 illustrates another example of a wrap package 10
authored to include a global audio widget that plays audio
during consumption, regardless of the given card 14 that is
being displayed. In this particular example, the wrap 10
pertains to a promotion for a Hawaiian vacation. When the
wrap is consumed, a related audio file (e.g., “theme” music
pertaining to the wrap, such as background Hawaiian music
in this example) is played. In this particular example, no
visual audio player interface is provided as in the previous
examples. On the contrary, just the music is played to
enhance the viewer experience while consuming the wrap.
Since no audio player interface is provided in this example
by design, the viewer has minimal control over the playback
of the audio, which will play continuously when the wrap is
being consumed. In this example, the iframe associated with
the widget would typically have no corresponding size and
there would be no need to define a position. Thus the height,
width and position fields of the widget descriptor can be null
or eliminated from the corresponding descriptor.

FIG. 32 illustrates yet another example of a global behav-
ior. In this example, the global behavior is the automatic
transition, as opposed user-swiping, between the cards 14 in
the wrap 10. In one variation of this embodiment, the
automatic transition from one card to the next in sequence
order may occur at a fixed interval of time (e.g., every 2 or
3 seconds). In an alternative embodiment, an event may
cause the automatic transition. For example in FIG. 26, one
more card(s) 14 of the wrap 10 includes some text. In this
particular example, an audio file narrating the text on each
card is played (In the particular card shown, the text regard-
ing George Washington crossing the Delaware River is
narrated). When the narration is complete, the transition to
the next card is automatically performed. This process is
continually repeated until all the cards 14 in the wrap are
consumed. With this arrangement, the timing between tran-
sitions may vary. For example, if it takes four seconds to

10

15

20

25

30

35

40

45

50

55

60

65

60

narrate the text of one card and ten seconds for the next card,
then the transitions will occur in four seconds and ten
seconds respectively. As this process is repeated for all of the
cards of the wrap, the resulting user experience is analogous
to an audio book, with the added benefit of incorporating
appropriate images, photos, video, embedded functionality,
etc.

With a children’s book implemented in a wrap package
for example, the various cards can include text that is
narrated, as well as images, photos, video and/or animation
illustrating the story. As the text of each card is narrated and
completed, the transition to the next card automatically
occurs. As a result, user experience is multi-sensory, pro-
viding a user experience previously not possible.

A wrap package, authored as an audio book, can also be
used to market products and/or services. Again, using a
children’s book as an example, consider the implementation
of Disney’s story (i.e., Winnie the Pooh) in the form of a
wrap package. In addition to the multi-sensory effects as
described above, the Winnie the Pooh wrap can also include,
for instance, a gallery card for items to be purchased (e.g.,
stuffed dolls of the main characters, such as Winnie the
Pooh, Tigger, Eeyore, etc.) or other promotions such as gift
certificates, coupons for Disney merchandise, vacation
packages to a Disney resort, etc. In other words, transaction
functionality, via a widget, cul-de-sacing, or built into the
cards of the wrap itself, can be authored into the wrap.
Again, given the unique ability to convey a story in a
book-like format, including functionality interwoven with
various types of media, wrap packages authored as audio
books can provide a marketing and promotional channel
previously not possible.

As noted above, the specified source of the audio content
for the widget may vary and may include, in alternative
embodiments, a streaming music service or a library of
music files for example. It should be understood, however,
that these examples should in no way be construed as
limiting. The type of media and application functionality
that can be incorporated into a global widget may widely
vary and is limited only by the imagination of the author.
Examples include, but are not limited to besides audio and
music, video, images, photos, text, transactional widgets for
the purchase or reservation/booking or goods or services,
online chat widgets, GPS or location widgets, etc.

Gallery Components

Components can also be associated with galleries to
create gallery components in substantially the same way that
they can be associated with the wrap to serve as global
components. That is, a component can be associated with a
gallery card 316 instead of being bound to a specific gallery
item or being a global component that is associated with
multiple cards. When a component is associated with a
gallery card, the associated content can be displayed on the
gallery card regardless of which gallery item frame is
currently shown. As with other components, the specific
content associated with a gallery is limited primarily by the
imagination of the gallery’s author. By way of example, if a
gallery shows a number of products from a particular
company, an image component associated with the gallery
card can be used to display the company logo in a corner of
the gallery card so that the logo appears at the same location
regardless of which gallery item is currently being viewed.

In other embodiments, gallery item designators can be
used to identify specific gallery items that the gallery
component is to be associated with. In some implementa-



US 9,460,228 B2

61

tions, the gallery item designators work substantially the
same was as card designators 1803. That is, the gallery item
designator may selectively identify a specific subset of
gallery items to which the corresponding gallery component
will apply. In embodiments that support gallery item desig-
nators, the default setting for a gallery designator may be
that the gallery component applies to all of the gallery items
in the gallery. The default may be implicit such that if no
gallery item designator is explicitly provided, the gallery
component is applied to all of the gallery items.

In still other embodiments, the content of a gallery level
component can be a variable. For example, using the logo
analogy, the content of the image component could be a
variable “Company_lLogo”, which obtains the logo of the
company whose product is highlighted in the corresponding
gallery item. The use of such variables tend to be particularly
useful in applications in which the wraps are automatically
generated as described in U.S. application Ser. No. 14/816,
935 (WRAPP022), Ser. No. 14/816,662 (WRAPP020C1)
and Ser. No. 14/816,678 (WRAPPO021C1), all incorporated
by reference herein for all purposes. Of course, variables can
be used in global components and/or ordinary components
as well.

In summary, any component that can be embedded in or
otherwise is associated with a card can also be a global
component by associating the component at the wrap level
rather than the card level. Designator(s) 1803 further provide
the ability to flexibly apply a global component to a subset
of cards, but not necessarily all the cards, of a wrap. In a
similar manner, any component can also be a “gallery”
component by associating the component at the gallery level
as opposed to the gallery item level. Gallery designator(s)
also provide the ability to flexibly apply gallery components
to two or more gallery items, but not necessarily all the
gallery items of a gallery card.

Runtime Environment

FIG. 15 illustrates representative components of another
specific, but nonexclusive embodiment of a runtime viewer
500. The illustrated runtime viewer 500 includes deserializer
501, event handler 506, behavior engine 530, feed engine
540, identity manager 550, and state manager 560.

The deserializer 501 is arranged to transform any given
wrap descriptor 40 into a runtime instance of the wrap
defined by the descriptor. In essence, the deserializer steps
through the wrap descriptor, generates the indicated cards
and components, and binds the various attributes (e.g.,
styles, declared behaviors, etc.) and any referenced assets,
feeds etc. with their associated components/cards, etc.

In the illustrated embodiment, the deserializer 501 is
shown as functionally including an object graph building
module (OG builder) 502 and a DOM building module
(DOM builder) 504. The object graph building module 502
is arranged to process a wrap descriptor 40 to create an
object graph 510 that binds the various attributes (e.g.,
styles, declared behaviors, feeds, etc.), referenced assets and
anything else declared or referenced in the descriptor with
their associated components/cards, and serves as the runtime
instance of the wrap. The DOM building module 504 uses
the object graph 510, to create a document object model
(DOM) 520 that serves as a browser readable instance of the
wrap. Although the object graph 502 and the DOM building
module 504 are illustrated as discrete components, it should
be appreciated that many implementations they would be
highly integrated such that they work together to create the
object model and the document object model from the wrap

10

15

20

25

30

35

40

45

50

55

60

65

62

descriptor. Since runtime viewer 500 is arranged to create a
document object model based runtime instance, it is well
suited for execution in a general purpose browser 151—
although that is not a requirement. In circumstances where
a native runtime viewer is utilized, the viewer may be
arranged to render the wrap based on the object graph 510
or based on an alternative final representation of the wrap
suitable for the specific platform.

The actual structure of the object graph 510 may vary in
accordance with the needs of a particular implementation.
By way of example, in the non-exclusive embodiment of
FIG. 16, the object graph 510 includes an ordered card list
512, a set of cards definitions 514 and an asset load state tree
515. The card list 512 represents the sequential order of the
cards and provides a simple mechanism for supporting linear
navigation through the card set. The card list may use a wide
variety of different formats. By way of example, a doubly
linked list works well in many applications. With this
arrangement, other than the first and last cards in the wrap,
each card is linked to the previous end next card in the list.
Thus the linked list serves as a mechanism for readily
identifying the previous and next cards in the wrap which
can be used when navigating the wrap. That is, when a swipe
is detected, the next or previous card is identified by the
linked list for rendering as appropriate based on the swipe
direction. The first and last cards include only a single link
to the next or preceding card respectively.

The card definition set 514 includes a card definition 517
for each card in the wrap. Each card definition 517 includes
all of the component objects of the card and associates all of
the relevant characteristics (e.g., assets, styles, behaviors,
other attributes, etc.) with the respective component objects
and any dependent component objects. If a special item such
as a feed descriptor is associated with the component, then
the card definition 517 will also include the binding to the
associated feed.

In some circumstances it may be desirable to have a set of
one or more cards that are dependent upon a user selection,
or an event, that occurs in the context of a particular card.
One example of such a circumstance is the purchase trans-
action described above and illustrated in FIGS. 8A-8H.
Specifically, when a user selects the “Buy Now” button 327
on card 316 (FIG. 8A), a set of purchase transaction cards
321-326 (FIGS. 8B-8H) become available, whereas they
would not have otherwise been part of the linear wrap
sequence. That is, selecting “Buy Now” button 327 causes
a transition to card 321 (FIG. 8B)—which would not have
otherwise been available to the user by simply swiping left.
Once in the purchase transaction card set, the user may
navigate within and out of the purchase transaction card set
in the same manner that other cards are navigated. One way
to facilitate such navigation is to provide a dependent card
list 513 within the object graph 510 as illustrated in FIG. 16.
The base card (card N) has a pointer to dependent card list
513 that is activated by selection of the “Buy Now” button
327. The last card in dependent card list 513 points back to
the base card N (or to any other appropriate card as desig-
nated by the wrap designer).

It should be appreciated that the dependent card list 513
can be independent of the specific originating cards such that
the same dependent card list can be accessed from multiple
cards within card list 512. By way of example, such an
approach may be desirable, when multiple cards have “Buy
Now” buttons that are intended to access the same check out
mechanism. To facilitate returning to multiple different
originating cards, the pointers to the originating card may



US 9,460,228 B2

63

take the form of a variable in the dependent card list with the
value of the variable being an identifier for the originating
card.

The asset load state tree 515 is a data structure that
identifies each asset that is referenced in the wrap descriptor
and indicates whether the referenced asset has been loaded
into the runtime. In some embodiments, the asset load state
tree takes the form of a tree of semaphores. Each time an
asset is loaded, the corresponding entry (e.g. semaphore) in
the asset load state tree is changed from a “not loaded” state
to a “loaded” state. In this way, the runtime can quickly
determine whether any given asset is already present, or
needs to be retrieved, when rendering a card.

Referring again to FIG. 15, the behavior engine 530
includes a library 531 of behavior definitions 60. In embodi-
ments that support behavior extensions 62, the behavior
engine 530 is also arranged to obtain behaviors extensions
62 from one or more external stores as necessary. Thus,
when the deserializer 501 encounters a behavior declaration
while processing a wrap descriptor 40, the deserializer
requests and receives the behavior definition corresponding
to the declared behavior from the behavior engine 530. Once
a behavior definition has been retrieved, it can optionally be
cached or stored persistently in the behavior definition
library 531 so that it is available for future use.

The behavior extensions 62 may be arranged as individual
behavior definitions or in bundles or packages of behaviors.
An advantage of bundling behaviors into packages is that a
set of behaviors can be defined that are considered useful for
particular functions (e.g., e-commerce functions; supporting
reservations, supporting chat sessions, etc.) while keeping
the base runtime size small. Then, card template designers
can make use of any subset (or all) of the bundled behaviors
when designing their templates. This allows the same bundle
of behaviors to be used for a wide variety of different cards
designed by different authors. To facilitate the use of behav-
ior extension packages, the wrap descriptor or any card
descriptor can include an Extension Identifier (not shown)
that identifies any behavior extension bundle(s) that is/are
used in that particular wrap/card. When the deserializer 501
comes to the Extension Identifier, it notifies the behavior
engine 530 of the need for the identified extension package.
Optionally, a Downloaded Extension Package List 533 may
be maintained by the behavior engine 530 or other appro-
priate component to provide a readily accessible mechanism
for determining whether a particular behavior extension
package is already present within the runtime. If the behav-
ior engine 530 does not already have the identified extension
package, it requests the identified package form the Runtime
Viewer Server, behavior extensions Store 162 or other
suitable source.

Any time an extension package is downloaded, the asso-
ciated behaviors can all be stored in the Behavior Definition
Library 531 and the Downloaded Extension Package List
533 (if used) may be updated to reflect the change. Often it
will be desirable to cache or persistently store any retrieved
behavior extensions within the behavior definition library
531 so that such extensions don’t need to be downloaded
again the next time the extension is required by another wrap
and/or the wrap is rendered in a different session. However,
caching or persistent storage is not a requirement and in
other embodiments a variety of different extension manage-
ment techniques can be employed.

As described above, the wrap descriptors 40 may include
various types of presentation or styling information, in data
structures that define how styles should be associated with
the various content. As the deserializer 501 processes the

10

15

20

25

30

35

40

45

50

55

60

65

64

wrap descriptor 40, it stores style information, in the form of
CSS class references, and/or literal CSS fragments, in the
associated nodes of the object graph 510. Further, wrap
descriptors 40 may include complete stylesheets, used to
bind the CSS class references mentioned above to the
intended presentational rules embodied in those stylesheets.
In embodiments that rely on external implementations of
HTML and CSS renderers (e.g. the mobile web-based
embodiment, and any embodiments that rely on platform
provided web views, such as the WebKit web view provided
by 108, Android and other platforms) the binding of CSS
classes to stylesheets may be left to the external implemen-
tation to render the objects thus annotated. In other embodi-
ments, a separate binding mechanism may be provided to
conform the presentation to match the intended presentation
rules embodied by the constellation of stylesheets, CSS
fragments, and CSS class references contained in the wrap
descriptor 40.

In some embodiments, the runtime itself provides base-
line stylesheets, used in the rendering of the core runtime
user interface components. These stylesheets may also be
available to be referenced from CSS classes associated with
individual nodes, as described above, to provide standard
user interface treatments.

Further, in some embodiments, a standard set of extension
stylesheets may be provided for inclusion by reference. In
addition, certain extensions (e.g. a chat or shopping cart
extension) may provide and load their own stylesheets, to
provide standard treatments, or extensible treatments, for the
rendering of associated Ul elements.

The deserializer 501 has rules for handling all of the
different component types supported by the runtime’s com-
ponent model. Thus, as the deserializer steps through the
wrap descriptor 40 it creates an object graph 510 that
represents the wrap. Each item in the descriptor that is
encountered is handled in accordance with the rules. A
representative, nonexclusive deserialization process is illus-
trated in, and described with reference to, FIGS. 12A-12C.

In the example illustrated, when a wrap descriptor 40 is
first received, any initial metadata such as the wrap id 42, the
wrap name/title 44 and any other relevant information 45 is
associated with a new wrap instance as represented by step
802. The deserializer 501 then gets the next item in the wrap
descriptor (step 803).

At the wrap level, there are typically only a handful of
different types of items that will be encountered during
deserialization. By way of example, these include metadata
about the wrap as referenced above, cards (e.g., card
descriptors 46), global components, and potentially global
attributes. Of course the card descriptors 46 may themselves
include a wide range of different types of components as
well as various attributes (e.g., styles, behaviors, etc.) asso-
ciated therewith to define the structure, content and func-
tionality of the associated cards respectively.

Referring again to FIG. 12A, if the next item encountered
is a new card (as represented by decision 805), then a new
card node (which is essentially a blank or empty card
definition 517) is created in the object graph 510 and the new
card is added to the card list 512 as represented by 806. A
corresponding “empty” new card is then created in the DOM
(807). After the new card has been created, the associated
card descriptor is processed to populate the associated card
as represented by flow chart step 808. During the processing
of the card descriptor, the deserializer effectively steps
through the card descriptor to populate the card with all of
the components, attributes and functionality of the card
defined by the card descriptor as described in more detail



US 9,460,228 B2

65

below with reference to FIG. 12B. Once the card descriptor
has been deserialized, the logic passes to step 817 where it
is determined whether any additional items are present in the
wrap descriptor.

At various locations within the present application, we
have referred to different types of cards. In some embodi-
ments, the different card types are differentiated primarily by
their content. Thus, for example, a gallery card is simply a
card that contains one or more gallery item components, a
video card is a card that has a video (e.g. YouTube) channel,
a checkout card is a card that facilitates a purchase trans-
action, a feed card is a card that contains a feed component,
a widget card is a card that contains a widget component, a
location card is a card that has a map/GPS component, etc.
Therefore, if the new card is anything other than a standard
card, its nature will be defined during the deserialization of
its contents and there is no need to differentiate between card
types when the card node is first created in the object graph.
However, it should be appreciated that in other implemen-
tations, different types of card nodes (e.g., standard card
nodes, gallery card nodes, video card nodes, checkout card
nodes, widget card nodes, location card nodes, etc.) can be
created in the object graph based on the type of card that is
being created, which may be explicitly defined in the
descriptor through the use of card type 73. If desired, the
runtime can be arranged to associate specific attributes (e.g.,
behaviors, functionality, styles, etc.) or even specific com-
ponents with a new card based on the card type.

Returning to FIG. 12A, if the next item encountered
during deserialization isn’t a card, but rather is a component
that is not associated with any particular card (as represented
by decision 810), then the component is understood to be a
global component and one or more new corresponding
component nodes are created in the object graph. Generally,
as discussed above with regard to FIG. 28, a global com-
ponent can be any type of component that is intended to be
applied to multiple (or all of the) cards. There are multiple
different ways that a global component can be represented in
the object graph 510. In some embodiments, a new compo-
nent node corresponding to the global component is created
in the object graphs card definitions 517 for each of the cards
that the global component applies to (step 811). The corre-
sponding components are then created in the DOM (step
812). Thus, if the global component is associated with all of
the cards, each of the cards will have a corresponding
component node. If the global component is only associated
with a subset of the cards, then a corresponding component
node is created in each of the cards in that subset. As the
global component descriptor is processed, any subcompo-
nents and attributes contained in the global component
descriptor are associated with each of the global component
nodes in the object graph and DOM as represented by flow
chart step 813. Thus, when separate component nodes are
created for each of the cards, the global component appears
as if it is a component of each of the cards.

Global components may be used for a wide variety of
applications and are described in more detail above with
regard to FIG. 28 through FIG. 32. By way of example, one
use case for a global component may be a logo that the wrap
creator desires to associate with every card in a wrap. Since
the global component applies to multiple cards, it is often
desirable for the global component to be positioned after the
card descriptors in the wrap descriptor. However that is not
a requirement.

In an alternative embodiment, a single node may be
created for the global component in the object graph and
DOM. Such an approach may be preferred in certain cir-

20

25

30

40

45

55

66

cumstances such as when it is desirable for the global
component to appear as an overlay for all of the cards in the
wrap. In such a circumstance, the runtime can optionally be
arranged to display the overlay in the same location as the
user is flipping between cards.

Regardless of which approach is taken, after the global
component has been processed, the logic proceeds to step
817 where it is determined whether there are additional
items in the wrap descriptor.

In some circumstances it may be desirable to associate
certain attributes (e.g., styles or behaviors) with the entire
wrap as opposed to simply a particular card or component.
An example use case of an attribute applied to the wrap
might be a custom card transition behavior. For example, if
the standard card transition behavior graphically mimics the
appearance of the current card flipping to the side like a page
would flip in a book, a custom card transition behavior might
graphically mimic the current card sliding to the side from
the top of a deck rather than “flipping.” An example of a
global style attribute might be a particular font or theme
color that is intended to be used throughout the wrap. Of
course, these are merely examples and the behaviors and
other attributes that may be associated at the wrap level is
limited primarily by the imagination of the wrap authors.

Returning to FIG. 12A, if the next item encountered
during deserialization is a attribute (e.g., a style, behavior,
etc.) that is associated with the wrap generally rather than
any particular card or component (as represented by decision
814), then the attribute is understood to be a global attribute
and is associated with multiple or all of the cards as defined
by the descriptor as represented by processing step 815.

It should be appreciated that the described wrap descriptor
architecture is readily extensible. Therefore, other types of
containers, components or functionality can be defined/
added at any time. Therefore, if the next item in the wrap
descriptor is any other type of item supported by the runtime
viewer, then the item is processed appropriately as repre-
sented by step 816.

After the processing of any particular item has been
completed, the next item is obtained and the process
repeated thereby effectively stepping through the wrap
descriptor until the entire wrap descriptor has been deseri-
alized. This process of stepping through the descriptor is
represented in the flow chart by determination 817 which
functionally asks whether the wrap descriptor contains any
additional items not yet processed. If so, the logic returns to
step 803 where the next item is obtained and then processed
in the same manner described. When the entire wrap
descriptor has been processed (i.e., there are no additional
items to the processed), the deserialization of the wrap
descriptor is completed.

The deserializer 501 processes (deserializes) the card
descriptors 46 by stepping through the card descriptor in
substantially the same way. One representative card deseri-
alization process (step 808 from FIG. 12A) is described next
with reference to FIGS. 12B and 12C.

In the example illustrated, once a card node has been
created in the object graph, any card metadata such as the
card id 71, the card name/title 72, the card type and/or any
other relevant information is associated with the card node
as represented by step 818. The deserializer 501 then gets the
next item in the card descriptor (step 819).

The card defined by the card descriptor may be composed
of a wide variety of different components. For example, if
the next item encountered is a text box component (as
represented by decision 820), then a new text box object is
created in the associated card definition 517 in the object



US 9,460,228 B2

67

graph 510 (as represented by 821). The container or sub-
container that the text box object belongs to is implicit based
on the descriptor structure. That is, when the text box is
presented as a component of the card descriptor, then the text
box is associated with the card. Alternatively, if the text box
is presented as a component of the wrap outside of the
bounds of any particular card descriptor, then it would be
considered a global text box. Still further, if the text box is
presented as a part of a gallery item descriptor or other
component, then the text box would be associated with that
gallery item or other component.

After the text box object has been created in the object
graph, a corresponding new text box is created in the DOM
(822). Typically, although not a requirement, the text
intended to populate the text box will be included in-line
within the descriptor. Thus, the appropriate text is inserted
directly into the text box object in both the object graph and
the DOM.

In many circumstances a component (such as the text box
or other type of component) will have one or more associ-
ated attributes (e.g. one or more styles, behaviors, etc.)
and/or it may include one or more subcomponents. Thus,
after the component has been “created” in the object and
DOM, the deserializer processes any attributes or subcom-
ponents associated with the component as defined by the
component descriptor. This process will be described below
with respect to FIG. 12C and is represented in the flow chart
of FIG. 12B by the element labeled “Go To 870 FIG. 12C”.

There are, of course, many types of components that may
be included in a card other than text boxes. If the next item
encountered during deserialization of a card descriptor is an
image component (e.g., an image or photo as represented by
decision 825), then a corresponding image object is created
in the associated card definition 517 in the object graph 510
(as represented by 826). Like with other components, the
container or sub-container that the image object belongs to
is implicit based on the descriptor structure. A corresponding
image object is then created in the DOM (827). Typically,
the actual image asset of interest is identified by reference in
the descriptor rather than being included in-line. For
example, the descriptor may contain a URL from which the
image asset can be obtained. Therefore, the deserializer adds
an entry corresponding to the new image asset to the asset
load state tree 515—and sets the entry to the “not loaded”
state. At some point, the image asset is requested from its
source (step 828). The actual request can be generated
directly by the deserializer, or it can be delegated to a
different routine. In browser based runtime viewers, respon-
sibility for the actual request may be delegated to the
browser. Thus, the actual image request will often not be part
of the deserialization process, which is why the image
request step 828 is shown in a dashed box in FIG. 12B.

After the image object has been added to the object graph
510 and DOM, the deserializer 501 processes the remainder
of the image component descriptor as described below with
respect to FIG. 12C. Thereafter the deserializer moves on to
the next item without waiting for the image asset to actually
be retrieved. The ability to continue processing the descrip-
tor while assets are being retrieved can greatly enhance the
speed at which wraps can be rendered at runtime.

Referring again to FIG. 12B, if the next item encountered
is a video component (as represented by decision 830), then
a corresponding video object is created in the associated
card definition 517 in the object graph 510 (as represented
by 831). A corresponding video object is then created in the
DOM (832). Videos are generally not stored in-line within
the descriptor. Thus, like images, the actual video asset of

20

40

45

50

60

68

interest is identified by reference in the descriptor. There-
fore, the deserializer handles the video in much the same
way as described above with respect to images. Accordingly,
an entry corresponding to the new video asset is added to the
asset load state tree 515—and the entry is set to the “not
loaded” state. The video is then requested (833) at the
appropriate time based on the runtime’s or browser asset
request rules. After the video object has been added to the
object graph 510 and DOM, the deserializer 501 processes
the remainder of the video component descriptor in the same
manner that other component descriptors are handled as
described with respect to FIG. 12C. Thereafter the deseri-
alizer moves on to the next item without waiting for the
video asset to actually be retrieved.

It should be appreciated that the actual requests to down-
load referenced assets (e.g., images, videos, etc.) can be
managed quite separately from the deserialization process.
In some circumstances it may be desirable to request all
referenced assets (images, videos, etc) as soon as they are
encountered by the deserializer. In other circumstances, it
may be desirable to manage the asset request in accordance
with other asset request rule. For example, since videos
typically require much more resources than images, it may
be desirable to request images immediately or first, while
waiting to a later time to request videos. The later time could
be: (1) after some or all other reference items have been
received; (ii) when the video card is actually rendered or is
within some predefined distance (e.g. one or two cards) from
the active card; when a user hits “play”; or any other time
determined to be suitable by the runtime developer. In still
other embodiments, the wrap template designer could be
given some level of control over the download request order.
In still other circumstances, a browser based runtime may
delegate the requests to the browser so that the runtime has
little direct control over the timing of the requests.

Referring again to FIG. 12B, if the next item encountered
is a widget (as represented by decision 835), then a corre-
sponding widget object is created in the associated card
definition 517 in the object graph 510 (as represented by
836). A corresponding internal frame (e.g., an iframe) is then
created in the DOM (837). A call is also sent to the source
indicated in the widget descriptor to obtain the content for
the iframe (838). As previously discussed, the call will often
contain parameters to be passed to the source. When desired,
the widget calls can be handled in a manner similar to the
image or video asset requests discussed above, including
inclusion in the asset load state list. However, in other
embodiments, it may be desirable to handle widgets in a
different way or to provide different classes of widgets that
are handled in different ways. For example, in many imple-
mentations it may be appropriate to download the widget
content when the wrap is instantiated. However, in other
situations it may be more appropriate to request the widget
content only when the user opens the associated card or
activates a trigger. Regardless of the approach that is taken
to populate the widget with content, after the widget object
has been added to the object graph 510 and DOM, the
deserializer 501 processes the remainder of the widget
descriptor as described below with respect to FIG. 12C.
Thereafter the deserializer moves on to the next item without
waiting for the widget content to actually be retrieved.

In some browser based embodiments, it may be desirable
to add an invisible event catching layer in front of the widget
as described below in the more detailed description of
widgets at runtime. In such implementations, an empty
container/frame is also added to the object graph in step 836.
The event catching layer having the same size and position



US 9,460,228 B2

69

as the widget and is arranged to appear in front of the widget
to ensure that any user inputs that occur over the widget can
be caught by the runtime. A corresponding frame (e.g., an
HTML div element) would then be added to the DOM as
part of step 837.

Referring again to FIG. 12B, if the next item encountered
is a link (as represented by decision 840), then a correspond-
ing link is inserted into the object graph (step 841) and a
corresponding link is created in the DOM (842). Thereafter,
the deserializer 501 processes any attributes associated with
the link component descriptors as described with respect to
FIG. 12C.

If the next item encountered is a gallery item container (as
represented by decision 851), then a new gallery item is
created in the associated card definition 517 in the object
graph 510 (as represented by 852). After the gallery item
container has been created in the object graph, a correspond-
ing new gallery item container is created in the DOM (as
represented by 853). As suggested above, in some embodi-
ments, the presence of a gallery item effectively makes the
associated card a gallery card. However, in other embodi-
ments, the gallery cards may have a distinct structure and
gallery items may be only be used in such gallery cards. In
the component model illustrated in FIG. 14, the gallery item
594 is also a container, although it should be appreciated that
when other component models are used, this would not
necessarily be the case.

After the gallery item has been created, the deserializer
processes the gallery item descriptor as represented by 854.
The gallery item descriptor can be processed in the same
manner as the processing of the card descriptor described
herein with respect to FIGS. 12B and 12C, except that the
components of the gallery item will be associated at the
gallery item level rather than the card level and gallery items
would typically not contain other gallery items, although
such an architecture could readily be supported if desired.

Generally, attributes may be bound to any component,
including container components. Thus, an attribute can be
bound to a content type component such as text, an image,
a video, etc., or to a container, such as a card, a gallery, a
gallery item, the wrap itself or any other component that
contains subcomponents. When the next item encountered
during deserialization of a card descriptor 46 is an attribute
that is associated with the card generally rather than any
particular card component (as represented by decision 845),
then the designated attribute is bound with the associated
card node in the object graph and DOM (848). Thereafter,
the logic proceeds to step 883 in FIG. 12C where it is
determined whether there are any remaining items in the
card descriptor.

It should be appreciated that the types of components
listed above are by no means exhaustive. Rather, there can
be a variety of other types of components in a cards
descriptor and the same general processes or other appro-
priate processes can be used to deserialize those component
types as well. For example, if feed components are used, the
feed descriptor can be deserialized in a similar manner, with
the actual feed content being obtained in accordance with
the rules and parameters associated with the feed that is to
be established. When the deserializer gets to the end of the
descriptor there are no more items to be processed and the
deserializing process is completed. The processing of other
types of components is generally represented by box 848 in
FIG. 12A.

After any component has been added to the object graph,
the deserializer continues to step through the component
descriptor to identify any attributes and/or subcomponents

5

10

15

20

25

30

40

45

50

55

60

65

70

that are associated with the component. One such process is
diagrammatically illustrated in FIG. 12C. Generally, after a
component has been added to the object graph, the logic
determines whether there are any items (e.g., attributes,
subcomponents, etc.) associated with the newly defined
component (step 870).

If so the next item is obtained as represented by step 872.
If the next item is an attribute (step 874), the attribute (e.g.,
style or behavior) is associated with the component (step
876) in the object graph and DOM and the logic returns to
step 870 where it looks for the next item in the component
descriptor.

If the next item is determined to be a subcomponent (step
877), the subcomponent is processed recursively in the same
manner as described above with respect to FIG. 12B, except
that the subcomponent is contained within its parent com-
ponent.

As indicated previously, the model is extensible so that if
other types of items are defined that can be contained by a
component, they can be processed appropriately in a similar
manner as represented by box 879 in FIG. 12C.

After all of the items associated with a particular com-
ponent have been processed (i.e., there are no more items
associated with the component as represented by decision
block 870), then the deserializer effectively determines
whether there are any more items associated with the card as
represented by decision block 883. If so, the logic returns to
step 819 of FIG. 12B where the next item in the card
descriptor is obtained and the same process is repeated for
that item. This flow continues until there are no more items
associated with the card (the no branch of decision block 883
of FIG. 12C) at which point the processing of the card
descriptor is completed and the logic proceeds to decision
block 817 of FIG. 12A where it is determined whether the
wrap descriptor has any further items. The deserializer
continues to step through the wrap descriptor in the
described manner until the entire wrap descriptor has been
processed and the wrap is ready to be rendered. It should be
appreciated that the particular container or parent that any
particular component belongs to is implicit based on the
descriptor structure itself.

Although the deserializing process has been described in
the context of the flowchart of FIGS. 12A-12C to simplify
the description, it should be appreciated that in actuality, the
logic of the deserializing algorithm can vary widely. Various
described functions can be delegated and some can be
performed in parallel and in different orders than the specific
described embodiments. Typically the runtime will have
deserializing rules associated with each component type that
it supports and those rules can vary widely from the specific
examples given.

Referring back to FIG. 15, the event handler 506 is
arranged to handle events relevant to a wrap that are
received once the wrap is rendered. As discussed above with
respect to FIG. 12, any time a detected event impacts the
wrap, the event handler will update the object graph appro-
priately, which in turn causes the DOM to update appropri-
ately.

The architecture of the event handler 506 and its affiliated
structures may vary widely. In some embodiments, the event
handler 506 is arranged modularly to include an event
handling core 507 that works in conjunction with a large
number of specific event handling components (specific
event handlers). Use of such an architecture is contemplated
with the embodiment described above with respect to FIG.
12 and components affiliated with one such embodiment of
event handler 506 are described with reference to FIGS. 17



US 9,460,228 B2

71

and 18. Many of the events that are expected to be received
in conjunction with a wrap are navigation related Ul gesture
events. Examples of such events might include swipe ges-
tures (e.g., left, right, up or down swipes), taps (often used
for selection of an item), etc. Discrete handlers may be
provided for each such gesture, or multiple handlers may
exist for a single gesture, in different contexts. For example,
a first specific handler may be provided to handle left swipe
events, a separate second specific handler may be provided
to handle right wipe events and so on. Furthermore, the
specific action that is appropriate in response to a particular
gesture event may vary based on the card. For example a left
swipe will typically have an associated behavior of flipping
to the next card. However, in certain circumstances a left
swipe may invoke a different action (e.g., when the user is
viewing the last card in a deck a left swipe gesture may
invoke a card flip bounce-back animation) and invoke a
different handler, based on that different context. In a highly
modular system, different handlers can be used to handle the
same event in conjunction with different cards having dif-
ferent intended behaviors. For example, a first left swipe
handlers can be utilized to handle left swipe events for most
cards, while a second (and different) left swipe handler can
be used to handle left swipes when the final card is active.
Of course, the same principle can be applied to any card.

FIG. 17 illustrates selected functional components of the
event handler core 507. The event handler core 507 includes
a handler rules engine 610, a handler registry 612, and a
current handler set list 614. The handler registry 612 is a
registry of all of the handlers that are available to the
runtime. If a particular wrap requires a handler that is not
present in the runtime, the event handler or other suitable
mechanism can request the missing handler from a server
side handler store or other appropriate location. The current
handler set list 614 identifies all of the handlers that are
currently active. That is, all of the handlers that are appro-
priate for wrap in its current state including the currently
active card.

The handler rules engine 610 defines that rules by which
the various handler are made active or inactive at any time.
The specific rules may vary widely and may include immu-
table rules that cannot be changed, default rules that may be
overridden by the appropriate instructions, special rules for
particular cards/states, etc. Special and override rules may
be provided in any appropriate manner, as for example, by
definition or reference in a wrap or card descriptor, as part
of an extension etc. Using the left swipe handler example,
the handler rules may designate a default left swipe handler
which transitions the wrap to the next card in response to a
left swipe. However, the rules may further mandate that a
default “last card left swipe handler” be used when the
currently active card is the last card in the wrap. Still further,
the rules may permit the wrap or card to identify a different
left swipe handler for use in place of the default handler(s)
a specific circumstances, or as long as the wrap remains
active. The alternative left swipe handler, may exhibit dif-
ferent behavior. The behavior difference can be small as
might be appropriate when the wrap author simply wants to
use a different card transition animation, or it may be more
complex. In either event, any time there is a object graph
model state change, the current handler set list 614 is
updated based on the handler rules to add any newly
required handlers and to eliminate handlers that are no
longer active.

Referring next to FIG. 18, components associated with a
representative event handler 506 will be described. In the
illustrated embodiments, the components include the event

10

15

20

25

30

35

40

45

50

55

60

65

72

handler core 507, feed event dispatcher 620, a scheduler
630, connection manager 635, navigation event handler 540
and state manager 560. The event handler core 507 is
generally arranged to handle a number of different types of
events including system events, Ul events 651, sensor based
events 653, Geo based events 655 and a variety of other
types of events 657. Ul events 651 include any events
generated in response to user inputs including various ges-
tures inputted on a touch sensitive display, keyboard entries,
mouse clicks, three dimensional gestures performed over a
touchless gesture recognition platform, inputs from other
user 1/O devices etc. Sensor based events include inputs
from any sensors connected to the computing platform, as
for example the accelerometers commonly used in cell
phones and other mobile devices, heart rate or other bio-
metric monitors, thermistors, etc. Geo events include events
that are triggered based upon the user’s geographic location.
There are, of course a wide variety of other events the
computing system may be arranged to receive or detect,
including system events, registry based events, etc. System
events are generally events generated by the computing
system as for example responsive to a call from another
process. An example of a registry source of event is a
network registry—which may, for example initiate a “Wi-Fi
available” event in response to the detection of a new Wi-Fi
network when no networks were previously available.

The navigation event handler 650, which is sometimes
referred to herein as the “pan handler”, as it responds to
panning events in the user interface, and includes the spe-
cific handlers that function to handle navigation based
events. The navigation handler 540 can optionally be inte-
grated into the event handler core 507 if desired. Alterna-
tively, other event handler core functionality can be del-
egated to other types of handlers similarly to navigation
handler 540.

Feed event dispatcher 620 is arranged to dispatch feed
related events. As such, it communicates with the event
handler core 507 and connection manager 635 as appropri-
ate. The connection manager 635, in turn, manages connec-
tions as appropriate for any particular feed.

Scheduler 630 has a plurality of timers and is arranged to
track scheduled events. When the time arrives for a sched-
uled event, the scheduler 630 notifies the event handler core
507 or the feed event dispatcher 620 as appropriate to handle
the scheduled events. Either the feed event dispatcher 620 or
the event handler core 507 can schedule events using
scheduler 630. For example, if a particular polling feed
requires updates every 30 seconds, the feed event dispatcher
620 would register the polling requirements with the sched-
uler 630. The scheduler 630, in turn would notify the feed
event dispatcher every 30 seconds of the need to poll again.
In response to each notification, the feed event dispatcher
620, in turn, manages the mechanics of the poll, which might
require opening a new connection, polling the source,
returning the results to the associated card or component and
closing the connection.

Widgets at Runtime

When a wrap that incorporates a widget component is
received by the runtime viewer 50, the widget descriptor
may be processed in much the same manner as other
components except that the runtime is arranged to create an
internal frame within the associated card when a component
of type widget is encountered. The content for the internal
frame (e.g., the HTML formatted content) is then obtained
from the identified source rather than being defined within



US 9,460,228 B2

73

the wrap descriptor. From the standpoint of the runtime
viewer, retrieval of the widget content is much like retrieval
of other assets such as images, videos, etc., although the call
is generally more complex due to the inclusion of the
parameters with the call.

When the deserializer 501 encounters a widget compo-
nent in a particular card descriptor, it creates an internal
frame (e.g., an HTML iframe) to contain the widget. This is
accomplished by first associating an iframe with the corre-
sponding node in the object graph and then creating the
iframe in the DOM. The dimensions (height and width) of
the iframe, as well as the location of its origin will typically
be defined in the descriptor, although this is not a require-
ment. Indeed, in some circumstances such as widgets
designed to present a gallery, it may be desirable not to
assign a fixed height to the gallery. When the location and
dimensions are defined, the corresponding dimensions are
assigned to the iframe when it is created.

The runtime initiates a call to the widget server specified
in the source identifier 126 passing the widget parameters
130 to the widget servers as part of the call. The call may be
made directly by the runtime or through the browser. Based
on the parameters received, the widget server knows the
content to send to the runtime viewer to populate the iframe
and to define its presentation and functionality. More spe-
cifically, the server sends an HTML document to be rendered
in the iframe. The HTML document contains the desired
content, scripts, etc. in a format suitable for rendering in the
associated iframe. The received HTML document is then
included as the content of the iframe in the DOM in step so
that the desired widget content is rendered when the asso-
ciated card is rendered.

As will be appreciated by those familiar with the art,
iframes are standard HTML containers that are currently
utilized in a variety of web applications and web developers
are quite familiar with their usage, thereby providing a
flexible and well understood way for developers to provide
wraps with customized content and/or functionality. How-
ever, it should be appreciated that other internal frame
structures can be used in place of iframes in alternative
embodiments.

Virtually any type of web content can be rendered in a
widget’s iframe. When desired, the content can contain
links, scripts that impart behaviors and/or other useful
constructs. For example, the content may include a link or
trigger that lunches a cul-de-sac or opens a new browser tab
outside of the wrap. The card and widget designer(s) have
complete control over the card’s functionality and the targets
to which the wrap user may link. Thus, for example, a card
designer may wish to direct wrap viewers to a particular web
page using either a new tab or cul-de-sac type structure.

As discussed above, the runtime viewer may be deployed
in a variety of different ways, including, for example, by
being executed on a general purpose browser, being incor-
porated into an application or applet, or in any other suitable
manner Execution on general purpose browsers present
some potential challenges that are more easily avoided in an
application/applet. For example, most general purpose
browsers are arranged to pass any user inputs that occur in
the region of an iframe directly to the iframe. This can be
problematic in the context of rendering a wrap because it is
possible that a wrap related navigational gesture (as for
example a swipe gesture) could be inputted or occur in full
or in part over the region of the display allocated to the
widget’s iframe. When such an event occurs, standard
browser operation would simply pass the gesture to the
widget without notifying the wrap runtime viewer. There-

10

15

20

25

30

35

40

45

50

55

60

65

74

fore, in any runtime viewer implementation designed to
execute on such a browser that supports iframe based
widgets, it is important to provide a mechanism for catching
wrap related user inputs such that they can be executed by
the runtime.

There are a number of ways to insure that the runtime
viewer receives the appropriate user inputs. For example, in
some implementations, the runtime is arranged to “block”
all user input events from being captured by the internal
frame so that all user input events are passed to the runtime
rather than being passed directly to the widget. Many
widgets will be “display only” widgets in that they do not
need to directly interact with any user inputs. The Date
Countdown widget illustrated in FIG. 26 is a good example
of a display only widget. Generally, there will be no need to
ever pass user input events to a display only widget. How-
ever, many other widgets, are more “interactive” in that they
facilitate or prompt user selections/inputs which must be
passed on to the widget or require messages to be passed
from the widget to the runtime viewer. Therefore, when
interactive widgets are desired, the runtime viewer must be
configured to facilitate communications between the run-
time and the widget.

One way to facilitate user input event blocking is to place
an invisible event catching layer in front of the iframe to
intercept all user input events associated with the widget/
iframe as briefly discussed above in the description of
widget deserialization illustrated in FIG. 12B. That is, for
every widget that is created in a wrap instance, a transparent
event catching frame layer is created by the runtime. The
event catching frame then directs the user input events to the
runtime for processing.

In an HTML based browser, the event catching layer may
take the form of an HTML div element which is simply a
container unit. The div element is placed in front of the
widget and preferably has the same size and location as the
widget frame. This assures that the runtime will receive any
user inputs made within the widget frame. There is no need
to define the event catching frame (div element) within the
wrap descriptor. Rather, the runtime’s widget processing
rules may be arranged to simply insert an appropriately sized
event catching frame in the object graph in front of the
widget frame any time that a widget is encountered. The
event catching frame causes a div element to be created in
the DOM. In other embodiments, the event catching frame
can be explicitly defined in the card or widget descriptor.

Since the runtime receives all user input events, any
events that are interpreted as wrap navigational events are
handled by the runtime in a normal manner as described
above with respect to FIG. 12. Any other user inputs
occurring within the region allocated to the widget are then
passed to the widget as would normally occur when user
inputs are made within the iframe bounds. Thus, any non-
navigational user inputs occurring within the iframe that are
not interpreted as a wrap related event are passed to the
widget.

When the runtime viewer is executed on a web browser
such that the wrap is rendered in the browser, the runtime
viewer and the iframe will be in different domains. In
general, most web browsers are not able to pass events
between frames in different domains. Therefore, to support
passing events between the runtime and the widget is such
browsers, a mechanism must be provided to pass the events.

In non-exclusive embodiments, the widget is arranged to
include a widget/runtime communication script tag to facili-
tate message passing. Thus, when the widget is loaded at
runtime, the script tag triggers the loading of a message



US 9,460,228 B2

75

passing API via JavaScript. The message passing API facili-
tates passing messages between the runtime viewer and the
widget iframe and can be used to inform the widget of
incoming user input events as well as to pass messages from
the widget to the runtime. The messages may be passed
using any appropriate event messaging protocol. By way of
example, one currently popular event messaging protocol
that is suitable for this purpose is the window.postMessage
method, although it should be appreciated that any other
suitable event message passing protocol may be used in
other embodiments.

When a messaging protocol such as window.postMessage
is used, the user input events transmitted in the event
messages may not be directly understood by the HTML that
defines the content of the widget. When that is the case, it
will be desirable to provide the widget and/or browser with
scripts suitable for translating the event messages into events
that can be interpreted by the widget. In general, such
translation scripts are arranged to determine what kind of
element was accessed and the proper action so that the
widget acts as if it were directly addressed. In practice, a set
of translation scripts may be provided to widget developers
that can translate typical widget events for typical widget
components, such as a tap or click event on a button, a text
box, a form, a pull-down or pop-up menu, etc. so that the
widget developers don’t need to try to program the transla-
tion scripts to support most common GUI constructs.

In some circumstances the user action is fairly simple and
can be fully handled directly by the translation scripts. A
good example of such a situation is a simple button tap or
click which can be simulated quite easily.

In other circumstances more complex responses are
needed and it may be desirable to apply focus to the target
element to thereby temporarily bypass or drop at least a
portion of the invisible layer so that subsequent input events
on that element pass directly to the widget. A good example
of this type of circumstance is when a tap or click action
occurs on a text field. In such a circumstance, it may be
desirable to pop up a text input element (e.g., a keypad) and
have subsequent keypad entries pass directly to the widget
where they would presumably be entered into the text field
without ever being intercepted by or known to the runtime.
To facilitate this, focus may be applied to the text input
element (keypad) and potentially the text box so that any
input events made directly on the keypad/text box pass
directly to the widget. Alternatively, when appropriate, the
focus could be applied to the entire widget or another
designated portion of the widget so that any inputs on the
widget/designated portion of the widget would pass directly
to the widget. When focus is applied, a callback is placed on
the text input element so that when focus is lost (e.g. a “blur”
event occurs), the widget will send a blur message back to
the runtime viewer that causes the runtime viewer to restore
the event interception. As will be appreciated by those
familiar with the art, focus may be lost in a variety of
different manners. For example, the focus may be lost when
the user makes an input indicating that the text entry has
been completed—(e.g. as may occur when a “return” or
“enter” key is selected). Another example of a situation
where focus may be appropriate is when the user activates
a dropdown menu. Of course, focus may be appropriate for
a variety of other GUI constructs as well. As will be
appreciated by those familiar with JavaScript, focus and blur
are JavaScript constructs designed to facilitate event del-
egation.

Some widgets will also need to communicate back to the
runtime. Such widget to runtime viewer communication can

20

25

40

45

55

65

76

be supported using the same messaging API. For example,
in some implementations of the transaction flow described
above with respect to FIG. 8A-8H, the transaction widget is
arranged to open a cul-de-sac to a web page when a “proceed
to checkout” button is selected so that the transaction can be
completed using the merchant’s website. To facilitate this,
the widget may pass a message to the runtime viewer
requesting that the runtime viewer open a cul-de-sac to a
particular website and potentially passing various param-
eters relevant to the transaction. Again, window.postMes-
sage works well for this purpose.

In most of the embodiments described above, runtime
related user input events are caught by the runtime before
they are passed to the widget. However, it should be
appreciated that in alternative embodiments, all user inputs
in the region of the widget iframe could be passed to the
widget and the widget could be provided with event recog-
nition code suitable for identifying wrap navigational ges-
tures. In such an embodiment, the wrap navigational ges-
tures would then be passed on to the runtime viewer.

Wraps as Messages

The described wrap packages 10 are essentially cloud
based portable data objects that can readily be distributed
using a wide variety of electronic techniques including
messaging, posting and inclusion as links in documents,
articles or other electronic communications. The wrap pack-
age 10 thus allows authors to take applet and website
functionality and make them consumable as a message,
delivered in a narrative storytelling format. This allows the
transformation of an app or website functionality into a
portable, sharable, and savable wrap package 10, that can be
distributed like electronic messages (e.g. email, SMS, text)
or within the content of a media feed, such as social media
feeds like Twitter or Facebook, a news feed like Reuters or
Bloomberg Business, etc.

Not only are the wrap packages 10 easy for publishers and
others to distribute, but viewers and other recipients of a
wrap may also readily share a wrap as a “message” with
their friends, family, coworkers, colleagues, etc. This is a
powerful construct that can greatly extend or enhance the
market (or other target segment) reach and penetration of a
well designed wrap since a “message” from a friend or
acquaintance is often more favorably received than a mes-
sage from an unknown party. Neither applets nor websites
are well suited for such viral distribution.

For example as illustrated in FIG. 7M, media sharing
triggers 381 and 383 can be used to share the wrap package
310 with others via various social media or content distri-
bution platforms. In the illustrated embodiment, these
include Facebook, and Twitter, although it should be appre-
ciated that similar sharing triggers can be provided to
facilitate sharing the wraps using virtually any desired social
media or content distribution platform.

In the embodiment shown in FIG. 7M, media triggers are
provided within or embedded in the wrap itself to facilitate
sharing. However, it should be appreciated that the wraps
can be shared in a number of other ways as well. For
example, the cover 15 that includes a URL associated with
the wrap (e.g., the wrap ID 42) can be posted on a social
media site or feed, emailed to others, or otherwise distrib-
uted using an electronic communication protocol or plat-
form.

Since the set of cards 14 that make up a wrap package 10
are encapsulated as a data object and can be sent as a unit,
the wrap package 10 can also readily be stored on a viewer’s



US 9,460,228 B2

77

device if the viewer so desires. Contrast this with a conven-
tional multi-page website which is not designed to be
persistently stored on a viewer’s device as a unit, even if
individual pages may sometimes be cached. It also elimi-
nates third party aggregator (e.g., the Apple App Store;
Google Play, etc.) control over the delivery of a company’s
services/messages to its customers as occurs in the distri-
bution of conventional apps.

Integrating Wraps into Media Feeds

One of the powers of the described wrap architecture is
that wraps can readily be integrated into a wide variety of
different platforms, including any type of media feed. For
example, a wrap can readily be posted into and viewed in the
context of a social media feed such as a Twitter, Facebook,
Instagram, Pinterest, etc. Similarly, a wrap can readily be
integrated into other types of feeds, such as a news feed (i.e.,
Reuters, Bloomberg business news, etc.), an RSS feed, or
just about any other type of media feed. In yet other
embodiments, wraps can be integrated within various blogs
and micro publication platforms such as Tumblr, etc.

The ability to insert and distribute wraps as messages
within media feeds and blogs is a very powerful construct
for facilitating widespread and even viral delivery of wraps
to a wide variety of potential viewers and/or consumers in
the content consumption environments that they prefer. The
ability to consume the wrap within the context of a social
media feed, for example, provides numerous advantages.
First, it allows the viewer to view the wrap without closing
out of, or navigating away from, the media feed they are
already consuming Second, by defining the content of the
wrap to be similar or related to the subject matter of the feed
already being consumed, the effectiveness of the wrap, along
with viewer engagement, are both significantly improved.
Third, the appearance of a wrap as a “message” within the
feed of similar content significantly reduces the “friction”
for the viewer to select and consume the wrap, as opposed
to for example a banner ad, which are commonly ignored.

Conversely, a wrap social media card can be configured to
integrate a social media feed into a wrap such that the social
media feed can be viewed within the context of a wrap,
without forcing the user to leave the wrap and launch a
separate app or open a new browser window. From the
context of a wrap author, this has the potential to increase the
“stickiness” of the wrap. That is, a user may be more
inclined to spend more time viewing and interacting with the
wrap if they are able to view desirable social media content,
without having to close out of the wrap and/or open or
otherwise navigate to a separate social media application.
For example, a wrap dedicated to a specific event, such as a
music concert, a sporting event, etc. can include a social
media card that allows the viewer to view, and post to, a
social media stream associated with that event.

Of course, there are a wide variety of other circumstances
in which facilitating interaction between a wrap and media
feeds will be desirable. By way of example, a few repre-
sentative embodiments integrating wraps with social media
are described below with reference to FIGS. 19 to 25.

FIG. 19A illustrates a Twitter feed 720 viewed on a
mobile device 712. The feed 720 includes a wrap cover 725
included as part of a specific tweet 722. As previously
discussed, the wrap cover 725 has an image and an embed-
ded link suitable for accessing an associated wrap 700.

As illustrated in FIG. 19B, selection of the cover 725
launches the wrap 700 associated with the cover 725 in-line
within the twitter feed 720. When the wrap 700 is launched,

10

40

45

50

78

the first card 701 is displayed in place of the cover 725, but
still within the twitter feed 720. That is, the wrap 700
appears within a frame of the twitter feed that was previ-
ously occupied by the cover 725—although the aspect ratio
of the frame may optionally change to accommodate the
wrap aspect ratio when the cover does not have the same
aspect ratio as the wrap as can be seen by comparing FIG.
19B to FIG. 19A.

The now rendered wrap 700 may then be navigated, in
situ, within the twitter stream 720 using swipe navigation as
previously described. For example, swiping left on first card
701 causes the wrap to flip to the second card 702 as seen
in FIG. 19C. Swiping left again on the second card 702
causes the wrap to transition to third card 703 as seen in FIG.
19D. Thus in the same manner as described above, the
individual cards, including any gallery cards (not illus-
trated), can be navigated within the context of the twitter
stream 720, by horizontal and/or vertical swiping.

It should be understood that a wrap included in a media
feed, like any wrap, may be of any desired length and may
be browsed using the same standard wrap navigation tech-
niques. In addition, any of the above-mentioned types of
cards may be incorporated into the displayed wrap, includ-
ing gallery cards, transaction cards, appointment cards,
booking and/or reservation cards, chat cards, cards incorpo-
rating feeds, etc.

Since the wrap is effectively incorporated into a tweet, the
viewer is able to perform the standard Twitter function(s) on
the tweet (and thus the wrap) through the use of standard
Twitter tools. Thus, the viewer is able to reply to the tweet
by selecting reply button 730, retweet the post (and thus the
wrap) by selecting retweet button 731, mark the tweet as a
favorite by selecting favorite button 732, copy a link to the
tweet, embed the tweet and/or utilize any other Twitter
functionality that is available to the user. Again, this pro-
vides a powerful construct for distributing and sharing
wraps.

In the embodiment illustrated in FIG. 19, the wrap 700 is
displayed in-line within the Twitter feed 720. In various
alternative embodiments, selection of the cover may cause
the wrap to open into a new container rather than appearing
in-line within the Twitter feed. The new container may take
the form of a new pane, a new tab, a new window or any
other GUI construct that is appropriate for the underlying
platform.

In another non-exclusive embodiment, FIGS. 20A-20C
show the same first three cards of the wrap 700 rendered in
a “full screen” mode on a mobile phone. In other words
when the wrap cover 725 appearing within tweet 722 of the
feed 720 is selected, the wrap 700 is rendered within the
entire screen of the display of the consuming device, as
illustrated. In variations of this embodiment, the wrap 700
may alternatively be rendered in a top-justified container, a
bottom justified container, a “¥4” size container within the
center of the display screen, or in other specific locations
relative to the screen.

With any of these embodiments, a “close” button or
similar construct may be provided to allow the user to return
to the twitter feed after finishing with the wrap. This type of
behavior is sometimes referred to herein as a cul-de-sac.
More generally, a cul-de-sac is a construct in which acti-
vating a link in a first container opens the target in a new
container, and thereafter, closing the new container returns
the user to the originating container.

In the embodiment of FIGS. 20A-20C, a close button 740
is overlaid on a small portion of the wrap. That is, the close
button 740 is an active trigger and can be seen on each of the



US 9,460,228 B2

79

cards, regardless of which card is currently displayed. Selec-
tion of the close button 740 closes the wrap and returns the
user to the feed 720 (e.g., back to the view of FIG. 19A). Of
course the close button 740 or any other container closing
mechanism can be provided and/or displayed in a wide
variety of other forms. By way of example, common close
container constructs used in other cul-de-sac applications
include: (i) close buttons located to the side or above the
active display region; and (ii) a “cancel” or “close” link or
button in a toolbar located above or below the active display
region. In such embodiments, the close functionality would
be associated with the container rather than the wrap itself.
In such circumstances, the closing of the container would
typically, although not necessarily, be handled by the
browser rather than the wrap itself.

In yet another embodiment as illustrated in FIG. 20D, the
new container may also include a Twitter toolbar if desired
so that the user can perform standard Twitter operations such
as reply 730, retweet 731, or mark as a favorite 732, etc.

In the embodiment illustrated in FIGS. 19B-19D, the
aspect ratio of the wrap rendered within the Twitter feed is
substantially the same as the aspect ratio of the wrap when
rendered “full screen” on the mobile device 712, as seen in
FIGS. 20A-20C. However, that is not always a requirement.

In other embodiments, the wrap can be rendered in a
different aspect ratio as illustrated in FIG. 21, which shows
card 703 of wrap 700 rendered at a different aspect ratio
within Twitter feed 720. Of course, the same aspect ratio
would preferably be used for all of the cards in the wrap.

Twitter, like many media feeds, can be viewed using
either a general purpose browser window or with a dedicated
Twitter app running on the consuming device. Regardless of
which is used, a wrap runtime viewer is utilized to render the
wrap. When a media feed is viewed using a browser, the
wrap runtime viewer may be executed by the browser. When
the feed is viewed using a dedicated Twitter app, the runtime
engine may be either incorporated into the app so that the
wrap can be viewed directly in the Twitter app, or the Twitter
app may launch a browser that in turn renders the wrap.

Regardless of whether the runtime viewer is executed by
abrowser or by an app, the processes used to obtain the wrap
descriptor and the runtime viewer may be the same as
described above, as for example, with reference to FIG. 11.
When the wrap is rendered, again either within a browser or
within an app, it is rendered into the designated container,
which as described above, can be in-line within a frame
defined by a message within the media stream (e.g., FIGS.
19A-19D), full screen size (e.g., 20A-20D), or a partial
screen size such as top or bottom justified or ¥4™ sized, etc.

In embodiments that utilize an overlay to provide a close
wrap functionality, the runtime must be informed to add the
close button 740 overlay. Of course, in other embodiments,
the close functionality may be handled directly by the
browser without involving the wrap. In either case, selection
of the close button closes the associated container (e.g.,
pane, tab, etc.) and returns the user to the original media
feed.

While the above examples were provided within the
context of a Twitter feed, it should be understood that in no
way should these examples be limiting. On the contrary,
wraps can be incorporated into just about any type of media
feed in substantially the same manner as described.

For example, FIG. 22 illustrates the incorporation of a
wrap into a post in a Facebook news feed. In this example,
Facebook feed 750 includes a post 752 having wrap cover
725 included therein. Similar to that described above, select-
ing the cover 725 causes the wrap 700 to be launched and

15

25

30

40

45

55

80

rendered in a manner similar to any of those described above
with respect to the Twitter example. For example, the wrap
may be displayed in-line within the Facebook feed 750 (as
seen in FIG. 22B) or in a separate container (not shown),
which can take any form (e.g., a full screen, partial screen,
a cul-de-sac, etc.). Similarly, the wrap runtime can be
executed by a browser used to display the wrap, or it may be
incorporated into a Facebook app itself.

When a wrap is integrated into a Facebook post, the
palette of Facebook tools that accompany posts can be used
to interact with and/or share the wrap. For example, the wrap
post can be shared with others using the Share tool 760, the
user can comment on the wrap post using Comment tool 761
or “like” the wrap post using Like tool 762. Of course any
of the other Facebook supported functionalities including
embedding the wrap post on a website, etc. and be accom-
plished as well.

Although the integration of wraps into social media have
been described primarily, in the context of Twitter and
Facebook, because those are two currently popular social
media platforms, it should be appreciated that wraps can be
integrated with virtually any other now existing or later
developed media platform. By way of example, other suit-
able and currently popular media platforms including news
feeds, sports or gaming feeds, social media such as Insta-
gram, Pinterest, MyFitnessPal, PhotoCircle, Vine, etc. Of
course, there are a very wide variety of other media plat-
forms that can be used as well. Additionally, wraps can
readily be integrated into various blogs and micro publica-
tion platforms such as Tumblr, etc.

Media Feed Cards

Another way to integrate a wrap with media is to include
a media feed card as part of the wrap. A media feed card may
be arranged to display or render a media feed directly in a
wrap itself.

Referring to FIGS. 23 A through 23D, a series of diagrams
illustrating an exemplary wrap package with a media feed
card is shown. In this particular example, the wrap package
is by the San Francisco 49’ers football team to fans follow-
ing the 2015 NFL draft. In FIG. 23, a card 771 showing the
name of the drafted players in each round is shown, in FIG.
23B, a gallery card 772 providing a profile of each drafted
player (note for FIG. 23B, just the individual windows of the
gallery card are shown for the sake of clarity), FIG. 23C is
a media feed card—specifically, a Twitter card 773 that
includes a Twitter feed, FIG. 23D is a transact card 774 for
purchasing 49er team merchandise.

FIG. 23C illustrates a Twitter media feed card 773 that
includes a Twitter feed embedded within the card. As seen
therein, the Twitter card 773 displays a Twitter data feed in
the context of a wrap. The data feed that is displayed can be
any data feed that the card author desires to include. For
example, a wrap having to do with a football team might
include a social media card that displays the team’s Twitter
data feed, a data feed associated with a particular hashtag,
etc. In other embodiments, the user may be able to select a
desired data feed from a menu of multiple available data
feeds, or more generally, a search dialog box could be
included on the card to allow a user to search particular
terms. As fans consume the wrap, they are capable of
consuming the various tweets posted in the feed or contrib-
ute and/or insert their own tweet, all within the context of the
feed card 23C of the wrap package.

In order to create a social media card such as Twitter card
773, the layout of the card is defined in the same manner as



US 9,460,228 B2

81

other cards and its components and attributes are defined by
the corresponding card descriptor. A data feed descriptor
may then be used to define the location from which the data
feed is to be obtained. The actual contents of any media feed
card descriptor can vary significantly. By way of example, a
representative, nonexclusive, polling data feed descriptor
suitable for establishing a Twitter data feed may have the
following structure:

Twitter feed: (787)
Type: live (105)
Source: https:/twitter.com/ (107)
Lifecycle: while-card-visible (109)
Target: container (111)
Parameters: (115)

lang: en (791)
meta charset: utf-8 (792)
hashtag: [@hashtag#l, @hashtag#2,] (793)
name: [$user_name] (794)

(795)

Password: [$twitter_password]
*

*
*

In this embodiment, the twitter data feed descriptor 787 is
a “live” server side event driven data feed as indicated by
“live” data feed type 105. The data feed source is https:/
twitter.com/ as indicated by source 107. The lifecycle of the
data feed is only while the card is visible as indicted by
lifecycle 109. The descriptor further includes a set of param-
eters 115 that define the nature of the data feed to be
retrieved. The actual parameters that are appropriate for any
particular social media data feed will depend heavily on the
APIs required by the social media platform (e.g. Twitter) in
order to define the desired data feed and may vary signifi-
cantly based on the nature of the data feed that the card
author seeks to facilitate. In some circumstances, that may
include metadata related parameters such as the language
and character set to be used in the data feed. This type of
information is represented by parameters 791 and 792 in the
example above—e.g., name/value pair 791 (lang: en) indi-
cating the use of the English language; and name/value pair
792 (meta charset:utf-8) indicating the character set to be
used in the data feed. Other parameters may be used to
define the content to be retrieved. This type of information
is represented by parameter 793 (hashtag: [@hashtag#l,
@hashtag#2]) which represent specific hashtags to be
included in the data feed. Still other parameters may be used
to identify and/or authenticate the viewer. This type of
information is represented by parameters 794 and 795 (e.g.
name value pair 794 name: [$user_name] indicating the
Twitter user name of the person viewing the wrap, and name
value pair 795 Password: [$twitter_password]). Of course,
the specific parameters that are appropriate to define any
particular data feed may vary widely and in some circum-
stances, the number of parameters utilized in the descriptor
can be quite high.

If desired, a social media card 770 can be configured to
provide the user’s personalized data feed thereby allowing
the user to view tweets from all of the people/entities that
they follow as illustrated in FIG. 24. In order to support
personalized data feeds, the card 770 needs to have an
appropriate authentication mechanism. The authentication
mechanism can be explicit by requiring the user to input
their user name and password into appropriate dialog boxes
on the card or may be more implicit by maintaining the user
authentication information in a cookie or state descriptor
associated with the user/wrap.

10

15

20

30

40

45

55

82

Another social media card is shown in FIG. 25, which
illustrates a Facebook card 780 arranged to facilitate Face-
book access. Facebook card 780 is quite similar to the
previously discussed Twitter card except that it facilitates
access to Facebook.

Social media cards can be created to facilitate interaction
with virtually any type of social media from within a wrap.
In each case, the card author has the ability to define the
scope of the cards use. In some applications, it may be
desirable to limit the card’s use for viewing and posting to
specific predefined data feeds relevant to the wrap’s pub-
lisher. In other circumstances, it may be desirable to facili-
tate more complete access to the associated platform. The
actual level of access facilitated in any particular social
media card is largely up to the card author.

Generating Wrap and Card Descriptors

Referring to FIG. 33, a flow chart 450 illustrating the steps
of generating card descriptors 46 for each card 14 in a wrap
10 is shown. As previously noted, a card descriptor 46 is a
collection of data objects. Thus, generating a card descriptor
46 generally involves generating and assembling individual
data objects for all the component(s), content(s) and
feature(s) contained in or associated with a the card 14,
including any global component(s).

In initial step 452, a first component (either a component
that is specific to the card or a global component designated
for the card) is selected. Thereafter, data object(s) are
generated for the component (step 454) along with any
associated content, regardless if inline or referenced by an
identifier such as a URL. In addition, data object(s) are
generated for attribute(s) (step 458), style(s) (step 460),
trigger(s) (step 462) and/or defined and/or declared
behavior(s) (step 464) associated with the component. In
decision step 466, it is determined if data object(s) have not
yet generated for are any additional components (again,
either card specific or global). If yes, then steps 454 through
466 are repeated for each component. If not, then in step
470, any meta data is associated with the card. Finally, the
card descriptor is generated from all the data object(s) and
the meta data (step 472). The card descriptor thus contains
everything needed to render the card at runtime.

It should be noted that the flow chart 450 described above
similarly applies to gallery cards. For each gallery item
container of the gallery card, the above process is repeated
for each component. When all the components have been
exhausted for a given gallery item, the process is repeated
for the next gallery item. A card descriptor is then generated
for the gallery card when the above-described iterative
process is complete for all of the gallery items.

Referring to FIG. 34, a flow diagram 480 illustrating the
steps of generating a wrap descriptor 40 is illustrated. In the
initial step (482), a first card of the wrap is selected and its
card descriptor is generated (step 484) using the process
described above with respect to FIG. 27. Thereafter, in
decision 486, it is determined if there are any additional
cards in the wrap package. If yes, then the next card in the
wrap is selected or incremented (step 488) and the card
descriptor for that card is generated in step 484. This process
is repeated until a card descriptor is generated for all the
cards in the wrap, as determined in decision 486. Then in
step 490, any meta data is associated with the wrap package.
Finally, in step 492, the wrap descriptor is generated from all
the card descriptor(s), any global components, and any meta
data 45 associated with the wrap 10.



US 9,460,228 B2

83

The wrap descriptor 40 is thus a collection of card
descriptors 46, each expressed as a collection of data objects
defining the structure, layout and content for each of the
cards 14, plus any global components. As such, the wrap
descriptor 40 includes everything necessary to render the
wrap upon runtime.

Wrap Packages and the Internet of Things

A number of trends are rapidly driving an increase in the
number of “Things” among the Internet of Things. These
factors include (i) falling costs in networking technology, (ii)
broadband Internet, particularly wireless (e.g., WiFi)
becoming pervasive, (iii) more and more devices incorpo-
rating sensor, control and networking capabilities and (iv)
smart phone and tablet usage becoming ubiquitous. As result
of these trends, it is expected that billions and billions of
devices will soon be interconnected in the Internet of Things
in the near future. Within this giant network, many new
relationships will be defined, including exchanges between
Things and people.

Wrap packages are highly suitable for communicating
information and delivering needed content, application func-
tionality and/or e-commerce services to humans as discussed
above. With these attributes, wrap packages can be widely
used in the connected world of the Internet of Things. For
example, wrap packages can be used to enhance the rela-
tionship between Things and humans, by delivering relevant
content, functionality and/or services in response events
sensed or controlled by a Thing among the Internet of
Things.

Referring to FIG. 35, a block diagram of an infrastructure
3500 for generating and delivering a wrap package in
response to a trigger event generated by a “Thing” among
the Internet of Things is shown. The infrastructure 3500
includes the Internet of Things 3502, a “Thing” 3504 among
the Internet of Things 3502, the wrap content delivery
network 3506, a wrap authoring tool 3508, and wrap storage
3510. For the sake of simplicity, just a single Thing 3504 is
shown. It should be understood that in the real world,
virtually an unlimited number of Things 3504 may be
included among the Internet of Things 3502.

The Internet of Things 3502, as noted above, is a giant
network of interconnected Things 3504. The Things 3504 all
typically include sensors and/or controllers and are able to
communicate over the Internet with other Things 3504
and/or people. The types of Things 3504 that could possible
be included in the Internet of Things 3502 is far to numerous
to be exhaustively list herein. For the sake of illustration,
however, several examples are provided herein:

(a) Office equipment, such as a printer, may be configured
as a Thing 3504 that sends out a notification that its ink is
low and needs replacing;

(b) Ahome thermostat may be configured as a Thing 3504
that generates a notification when the sensed temperature of
a home has exceeded or fallen below predetermined thresh-
olds;

(c) A factory floor sensor can be configured as a Thing
3504 that is used to control manufacturing equipment;

(d) A wearable sensor can be configured as a Thing 3504
that will automatically call emergency services if the person
wearing the sensor has fallen; and

(e) An elevator in an office building can be configured as
a Thing 3504 that generates a notice when servicing and/or
a repair is needed.

Virtually any device capable of being connected to the
Internet, regardless if through a wired or wire-less link, can

10

15

20

25

30

35

40

45

50

55

60

65

84

be a Thing 3504 among the Internet of Things 3502. Such
devices may be any “Thing” 3504 that is used in a wide host
of vertical markets and/or industries, such as retail, trans-
portation, hospitality, travel, restaurant and food services,
telecommunications, healthcare, banking, financial services,
energy, insurance, automotive, education, government, food
and beverage, media and entertainment, real estate, publish-
ing, industry, manufacturing, energy, security and surveil-
lance, home automation, agriculture, to name just a few.
Thus, the term “Thing”, as used herein, is broadly intended
to include just about any device capable of sensing, con-
trolling and/or communicating with another device or person
over the Internet.

The wrap content delivery network 3506 is provided for
maintaining and delivering wrap packages to target recipi-
ents, as described above in more detail with respect to FIGS.
9A and 9B. A wrap authoring tool 3508 is included in or
associated with the wrap content delivery network 3506.
With the tool 3508, an author is able to author a wrap
package, which is maintained in storage 3510. The content
delivery network 3506 is also responsible for delivering a
corresponding wrap descriptor 46, including a plurality of
card descriptors 40, when a wrap package 10 is to be
delivered to computing device(s) 12 associated with one or
more target recipient(s).

The wrap authoring tool 3508, in a non-exclusive embodi-
ment, relies on templates for the creation of wrap packages.
The card templates may be directed to a wide variety of
different card types, such as text cards, image cards, photo
cards, document cards, link cards, gallery cards, feed cards,
transaction cards or widget cards. The authoring process
generally involves the selection of a card template, creating
a card by duplicating the card template, and then editing the
card to include desired content, functionality and/or ser-
vices. As the cards are authored, they are then placed in one
or more linear sequences, which define the order in which
the cards are rendered in response to navigational inputs
when the wrap is consumed. As previously noted, wraps can
be authored to include a wide variety of (i) multi-media, (ii)
application functionality and/or (iii) e-commerce related
services. For more detail on the authoring tool 3506, see
U.S. application Ser. No. 14/740,539 filed Jun. 16, 2015 and
PCT Application PCT/US15/050478 filed Sep. 16, 2015,
both entitled “Authoring Tool for the Authoring of Wrap
Packages of Cards, both also incorporated by reference
herein for all purposes.

Referring to FIG. 36, an exemplary flow diagram imple-
mented by the infrastructure 3500 for generating and deliv-
ering a wrap package 10 in response to a trigger event sensed
by a Thing 3504 among the Internet of Things 3502 is
shown.

In the initial step 3602, an author generates a wrap
package using the authoring tool 3508. During this process,
the author defines the cards 14 of the wrap package 10 and
the one or more linear sequences for browsing the cards 14
when the wrap 10 is rendered. At this stage, the wrap
package will often, although not necessarily, include various
cards 14 with one or more empty component containers.
These empty component containers are typically bound to a
data source which is arranged to provide or serve variable
content, functionality and/or services. When a given trigger
event occurs, the data source then generates appropriate
content, depending on such variables as the type of Thing
3504, the type of trigger event, the intended recipient of the
wrap, etc. As a result, the wrap package 10 is customized “on
the fly” to include with variable content that is pertinent to
the target recipient, the Thing 3504 and/or the trigger event.



US 9,460,228 B2

85

In various embodiments, the empty component containers
may include text, image(s)/photo(s), video, a widget, an
appointment, reservation or booking function, GPS or posi-
tional functionality, application functionality and/or a trans-
action functionality.

In step 3604, the Thing 3504 detects a trigger event,
which can be just about any type of detectable condition or
occurrence. For example, the event could be a sensed
temperature, pressure, GPS or positional data. Alternatively,
the event could be a diagnostic system occurrence, such as
the Thing is in need of maintenance or repair. Or, in other
examples, the event could be a detectable condition, for
instance, on a shop floor of a manufacturing facility. It
should be understood that these are just a handful of
examples. All the possible trigger events are far too numer-
ous to exhaustively list herein. The terms “trigger” and/or
“event” should, therefore, be broadly construed and include
any event, occurrence and/or condition that can be mea-
sured, controlled and/or sensed.

In step 3606, the Thing 3504 generates a notice of the
event. In various embodiments, the notice may include (i)
identification of the Thing 3504 such as an identification
number, make and/or model of the Thing, (ii) an identifica-
tion of one or more recipient(s), if known, to receive a wrap
package 10 in response to the notification and/or (iii) a
description of the event. In the case of the latter, the
description of the event may take various forms. In one
embodiment, predefined codes may be used to define dif-
ferent conditions or events. For example, many diagnostic
systems will generate different codes, each uniquely iden-
tifying a specific problem, condition or malfunction.

In step 3608, to the extent the identity of the intended
recipient(s) of the wrap package is not already known, steps
are taken to identify the target recipients. In various embodi-
ments, a number of techniques may be used. For example,
the recipient(s) may be associated with a given Thing 3504
and designated to receive a wrap package 10 generated in
response to any trigger event. If an automated garage door
opener detects that a garage door has been left open, a notice
of the event may include, among other information, the
identity of the home-owner(s) and/or home address. In
response, a security company may automatically send a
wrap package 10 to the identified home owner(s). Again, this
one example should not be construed as limiting. Any
process or technique can be used to identify target recipients
of a wrap in response to any trigger event.

In step 3610, the wrap content delivery network 3506, in
cooperation with the entity or entities in the Internet of
Things 3502 that receive the notice, selects or defines the
appropriate custom or variable content for inclusion in any
empty component containers of the wrap package. Such
custom content may include one or more types of media
(e.g., text, images, photos, video, etc.), application function-
ality and/or e-commerce related services. This step typically
involves a number of analytic decision making processes or
rules to ensure that the wrap 10 includes relevant and/or
needed content. Some of the factors that may be used
include (i) a make and model of the Thing 3504, (ii) a
specific diagnostic code included in the notice, (iii) a loca-
tion of the Thing 3504 when the trigger event occurred,
and/or (iv) an identity and/or demographics of the identified
target recipient(s). It should be understood that this list is not
exhaustive and that a wide variety of other factors may be
used. Several illustrative examples are provided below:

(a) an appointment function for scheduling a service
appointment when a notice indicating that normally sched-
uled maintenance for a Thing 3504 is required;

10

15

20

25

30

35

40

45

50

55

60

65

86

(b) emergency and/or roadside assistant services, such as
the ability to contact police, emergency medical services
and/or contact local roadside assistance when a notice
indicates that a vehicle has been involved in an accident; or

(c) transaction functionality for the purchase of new ink
cartridges when a notice indicates that the ink in an office
printer is low.

Also, when a notice includes specific diagnostic codes,
the custom content will typically include multi-media con-
tent, application functionality and/or e-commerce related
services specific or related to a given code number. For
instance if an onboard diagnostic system on a vehicle detects
a flat tire or an overheating engine, then different diagnostic
codes will be generated in each case. The resulting custom
content will thus vary, depending on the received diagnostic
code, so that pertinent content is included or associated with
the variable content containers of the wrap 10 in each case.

Again, these are just a few examples that in no way should
be construed as limiting. Wraps 10 can be authored and
generated to include just about any type of custom or
variable content, application functionality and/or e-services
applicable for just about any type of Thing 3504, condition
or event.

In step 3612, the custom content, defined in the previous
step, is dynamically inserted into or associated with the
various custom content containers of the wrap package 10.
In preferred embodiments, the wrap is authored to provide
a friendly, interactive, multi-media experience including
content, functionality and/or services relevant to the Thing
3504, the trigger event and/or the target recipient(s). For
more information on how wraps are created, with custom
content and functionality, on the fly in response to trigger
events, see U.S. application Ser. Nos. 14/816,662, 14/816,
678, and 14/816,935, each incorporated by reference herein
for all purposes.

In step 3614, a wrap descriptor 40 for the wrap package
is generated. As described above with respect to FIGS. 33
and 34, the wrap descriptor is generated by (i) generating a
card descriptor 46 for the cards 14 of the wrap package and
(i1) including each of the card descriptors 46 in the wrap
descriptor 40. Once the wrap descriptor 40 is defined, it is
maintained in storage 3510, along with a corresponding
wrap identifier 42 and/or an associated cover 15.

In step 3616, the wrap descriptor 40 is delivered to a
computing device associated with the identified target
recipient(s). In one non-exclusive embodiment, the wrap
identifier 42 is embedded in a URL and delivered via a
message, such as a text or email. Alternatively, an associated
cover 15, which embeds the wrap identifier 42, is delivered
in an email or text message. In either case, the wrap
identifier 42 is used to retrieve the corresponding wrap
descriptor 40 when the message is consumed and the recipi-
ent wishes to review the wrap 10. Again, the delivery
methods described herein are merely exemplary. In various
embodiments, any delivery method may be used.

Finally, in step 3618, the recipient(s) interact with the
delivered wrap package to address the trigger event detected
by the Thing 3504. For example, if the trigger event was an
overheating engine or a flat tire in a vehicle, then instruc-
tional content provided in the wrap can be used by the
recipient to possibly correct the problem on their own on the
side of the road. Or, if the trigger event is a routine
maintenance notice for an appliance, then the recipient can
book an appointment with a local authorized service orga-
nization on the spot through the wrap. Again, these are just



US 9,460,228 B2

87

a few examples. In actual embodiments, recipients may
interact with wraps in a wide variety of ways, depending on
circumstances.

Referring to FIGS. 37A and 37B, a number of exemplary
cards of a wrap package 3700 with empty component
containers is illustrated. These cards are typically main-
tained at the wrap content delivery network 3506. In a
non-exclusive embodiment, the various empty component
containers are bound to a data source that provides variable
content, which may include (i) multi-media, (ii) application
functionality and/or e-commerce related services, all which
may be use to create and deliver a given wrap with custom
content.

Cards 3700A and 3700B each include a number of empty
text component containers 3710 and image component con-
tainers 3712. These types of cards are typically used for
delivering text and image/photo type content.

Card 3700C includes a document component container
3713. A document file, such as a PDF, can be insert in or
associated with the component container. Card 3700C also
includes, in this example, a download trigger 3714 for
accessing the document.

Card 3700D is a gallery card including a plurality of
gallery components 3715. In this example, the gallery com-
ponents 3715 include text component containers 3710,
image component containers 3712, and an appointment
component container 3716, which includes or associates an
appointment, booking, and/or reservation function with the
corresponding gallery component 3715. In various embodi-
ments, the function can be implemented by using a widget,
by cul-de-sacing to a remote web site, or by authoring the
functionality into the gallery card or other cards (e.g.,
dependent cards, not shown) of the wrap package.

Card 3700E includes a video component container 3718.
A video can be either inserted into or associated with the
video component container 3718.

Card 3700F includes a GPS component container 3720. In
various embodiments, GPS functionality can be imple-
mented using a GPS widget or can operate in cooperation
with a GPS functionality (e.g. Google maps or the equiva-
lent) that resides on a consuming device 12.

Card 3700G includes a chat component container 3722. In
various embodiments, the chat component container 3722
may include or associate a chat widget and/or a two-way
feed for supporting chats.

Finally, card 3700H is another gallery card including a
number of gallery components 3715. In this instance, the
gallery components 3715 include text component containers
3710, image component containers 3712, and a “Buy”
component container 3724. In various embodiments, the
Buy functionality can be implemented in a number of ways,
including:

(a) associating a buy widget with the component container
3724;

(b) using a one-click or analogous buy operation using
previous stored data (e.g., customer name, credit card infor-
mation, shipping address, etc.) necessary to complete the
transaction;

(c) using dependent cards (not illustrated) for facilitating
the buy transaction; or

(d) cul-de-sacing to a remote location, such as a web site,
for processing a buy transaction. In this latter embodiment,
the Buy component 3724 is essentially a URL link which
provides the address to the remote location.

The various card templates described herein are merely
exemplary and are not intended to be limiting in any regard.
On the contrary, card templates with a wide variety of

20

25

40

45

55

60

88

different component containers, functionality, e-commerce
related services, structures and/or layouts may be used.

FIGS. 38A-38B illustrate an example of a wrap package
3800 generated and delivered with custom content in
response to a notification received from a Thing 3504
indicating that a trigger event has occurred. In this particular
example, the Thing is a General Electric (GE) refrigerator
and the trigger event is a notice by the onboard diagnostic
system that it is time to replace the built-in water filter. The
resulting wrap package 3800, which is derived from the
wrap package 3700, includes various cards with custom
content relevant to the replacement of the water filter.
Specifically:

Card 3800A includes the GE logo and an image of the
refrigerator;

Card 3800B includes a message indicating that it is time
to replace the water filer, the model number of the filter, and
an image of the filter;

Card 3800C includes an instructional document, such as
a PDF file, on how to replace the water filter. When the
“Download” trigger is activated, the document is retrieved
and displayed within the card;

Card 3800D is a gallery card that displays, in each gallery
component, a different local appliance repair shop. Each
gallery component also includes a “Make an Appointment
Now” trigger. In various embodiments, the appointment
function can be implemented using any of the techniques
described above;

Card 3800E includes or associates an instructional video
that shows how to replace the water filter;

Card 3800F includes GPS functionality showing various
local brick and mortar merchants where the needed filters
can be purchased;

Card 3800G provides chat functionality so that that the
home owner can chat with an online GE service represen-
tative. In various embodiments, the chat can be either text,
voice or a combination of both; and

Card 3800H is another gallery card including multiple
gallery components, each including a different online mer-
chant for purchasing the needed water filter. Each gallery
component also includes a “Buy” function that facilitates the
purchase of filter(s) from the corresponding merchant. In
various embodiments, the Buy function can be implemented
using any of the techniques described above.

The wrap 3800 provides just one illustrative example of
a wrap generated in response to a noticed received from a
Thing 3504. It should be understood that an almost infinite
number of different wraps 10, each including a wide array of
custom content, application functionality and/or services,
can be generated and delivered in a similar manner in
response to any type of Thing 3504, trigger, event and/or
occurrence. As such, the wrap 3800 should not be construed
as limiting in any manner.

Benefits and Advantages of Wrap Packages

Wrap packages 10 offer a number of benefits and attri-
butes currently not available with conventional methods of
distributing content, such as with PDFs, web sites, or
stand-alone apps. Since cards 14 can be sequenced and
authored to include media content, application functionality,
and e-commerce related services, wrap packages 10 have the
unique ability to narrate a story, in a book-like format, that
captures and holds the attention of the viewer, while also
offering an “app” like user experience. As such, wrap
packages 10 offer a new web-based platform for storytelling,
communicating ideas, and delivering highly visual and



US 9,460,228 B2

89

functional user experiences. Wrap packages 10 thus enable
a new business paradigm for selling, advertising, publishing,
increasing brand loyalty, offering services, and contacting
and engaging new and old customers alike, all ideally
delivered to consumers on their mobile devices, where they
spend their time and consciousness. Where businesses used
to have to build destinations (e.g., websites) or monolithic
systems “apps”), they can now, instead, provide consumers
with wrap packages 10, that are delivered like messages, and
that provide the user experiences and functionality they
really want and need. As a result, wraps 10 create opportu-
nities for business to innovate and improve products and
services, leveraging the mobile web in ways not before
possible, because a convenient, enabling interface and plat-
form did not previously exist.

Wrap packages 10 are also like interactive messages that
can be easily shared, delivered over the mobile, web, and
locally stored. With the ability to share, distribute over the
mobile web and locally store, popular wrap packages can
readily go viral.

Wrap packages 10 are also preferably delivered using a
SaaS (Software as a Service) model, meaning wrap packages
are delivered only on an as-needed basis.

Wrap packages can be authored by anyone, from an
individual with little technical or design skills, to large and
sophisticated enterprises.

Wrap packages 10 can be distributed narrowly to a
specific or targeted person or persons or widely distributed
to many, many persons.

Wrap packages 10 can be written once and can run on just
about any browser enabled device. As a result, wraps are not
platform, operating system, or device dependent.

Since wrap packages 10 can be easily generated and
optionally dynamically updated with new content, wrap
packages can be used as a digital “corollary” or “compan-
ion”, accompanying the sale or rental of goods and/or
services. For example, wrap packages can be created and
distributed as an “Active Receipt” accompanying the sale or
rental of a good or service. The merchant can thus provide
through the wrap package 10 ongoing contact and support to
on-board, up-sell and/or cross-sell the customer with ancil-
lary goods and/or services, potentially for the entire life
cycle of the product or service, all delivered in a digital
format that never gets lost or misplaced. Accordingly, wrap
packages can be used as an essential component of any
product or service, delivering better customer service and
creating new selling opportunities.

In summary, wrap packages 10 introduce the “narrative
web”, which is a storytelling mobile user interface, delivered
over a cloud-based platform, ushering in a digital evolution
of mobile marketing and customer relationship manage-
ment. As a marketing tool, wrap packages 10 have the
unique ability to increase mobile engagement, lead genera-
tion, and conversion, enabling businesses to increase sales,
improve loyalty, and enhance customer relationships and
loyalty. Wrap packages 10 thus offer a compelling business
proposition by solving one of the biggest problems in the
mobile space of today; namely the lack of connectivity
between apps. With wrap packages 10, however, consumers
and other users can enjoy a multi-function app-like experi-
ence, without having to be in an app, download an app, or
open any apps.

Finally, while many of the benefits and attributes of wrap
packages 10 are realized on mobile devices operating on the
mobile web, it should be made clear that there is nothing
inherent with wrap packages 10 that limit their usefulness or
functionality in non-mobile environments. On the contrary,

10

15

20

25

30

35

40

45

50

55

60

65

90

wrap packages 10 can also be used, and all the same benefits
and attributes realized, on non-mobile devices, such as
desktop computers and/or smart TVs for example.

The present invention is thus intended to be broadly
construed to cover any system and method, such as carousel
ads for example, that enables publishers and marketers to tell
sequenced stories with (i) a combination of images, photos,
text, video and other types of media, (ii) a swipe-able format
that enables viewers to navigate the media displayed in one
screen shot or frame to the next, and (iii) includes embedded
app-like functionality and/or links to other locations that
provide additional information or such functionality and/or
services. Consequently, the present application should not be
construed to just those specific embodiments as described
herein.

In the primary described embodiments, all of the behav-
iors are declared rather than being stored in-line within the
descriptor. Thus, the descriptor itself does not have any
programmable logic. In many embodiments, the declared
behavior are all defined within the runtime viewer such that
the runtime view can readily associate the desired behavior
with the wrap, card or component as appropriate in a runtime
instance of the wrap. It should be appreciated that this is a
particularly powerful framework for enhancing portability
of the wraps. With the descriptor/runtime viewer approach,
a single item (the descriptor) can be used to define all of the
content and functionality of a set of cards that can be
rendered on virtually any platform. The declared function-
ality is provided (or obtained) by the runtime viewers when
the wrap is to be rendered so that the author of the wrap is
not required to know or understand any of the idiosyncrasies
of any particular platform. The runtime viewer may be a
generic runtime viewer (e.g., a viewer executable by a
conventional browser) or may be native viewer customized
for a particular platform. Regardless of the underlying
platform, the runtime viewer handles the tasks of associating
the declared behaviors with the wrap/cards/components
which frees the wrap author and/or authoring tool from
having to ensure that desired behaviors are programmed
correctly for all of the different platforms that the wrap may
be rendered on.

In most implementations, all of the sizeable assets that
serve as content of the wrap are referenced in the wrap by
appropriate identifiers rather than being stored directly in the
wrap. This again significantly enhances portability by keep-
ing the size of the descriptor small while facilitating the use
of rich media content.

From the foregoing it should be apparent that the
described wrap packages provide businesses with a powerful
tool for engaging their customers, suppliers, employees or
other constituents in a format that is particularly well
tailored for display on mobile devices.

Although only a few embodiments of the invention have
been described in detail, it should be appreciated that the
invention may be implemented in many other forms without
departing from the spirit or scope of the invention. For
example several specific wrap descriptor structures have
been described. Although such descriptor structures work
well, it should be appreciated that the actual descriptor
structure may vary widely. For example, in some embodi-
ments some special behaviors can be defined within a wrap
descriptor if desired. Such in-line behavior definition might
be particularly useful in association with certain behavior
extensions that are not otherwise readily available. For
example, JavaScript can be included within a JSON object
and various other descriptor structures. Thus, when JSON
descriptors are used, selected behaviors or behavior over-



US 9,460,228 B2

91

rides can be defined in-line using JavaScript if desired.
Although programmed functionality can be included in
some circumstances, it should be appreciated that liberal
definition of behaviors within a wrap tends to defeat some of
the primary advantages of the described descriptor/runtime
viewer framework.
In many implementations much of the actual content of
the wrap will be referenced by the descriptor rather than
being stored in-line within the descriptor. However, the
balance between in-line storage and references to external
assets in any particular wrap descriptor may be widely
varied anywhere from 100% referenced content to (at least
theoretically) 100% in-line content—although the later is
less desirable for media rich content and again, begins to
defeat some of the advantages of using the descriptor
approach. The choice between in-line and referenced con-
tent will typically be dictated in large part by the relative size
of the content. For example, text, which tends to be very
compact, is generally more suitable for inclusion in-line,
whereas more graphic media, images, videos and/or audio
files are typically more efficiently referenced.
A few different methods of and architectures for serving
wrap packages and constructing runtime instances have been
described herein. Although only a few approaches have been
described in detail, it should be apparent from the foregoing
that a wide variety other methods and architectures can be
used as well. Therefore, the present embodiments should be
considered illustrative and not restrictive and the invention
is not to be limited to the details given herein, but may be
modified within the scope and equivalents of the appended
claims.
What is claimed is:
1. A method performed at a node on a network, compris-
ing:
receiving a notice indicating that a trigger event as
determined by a Thing among the Internet of Things
(“IoT”) has occurred, the trigger event defined as an
occurrence or condition that the Thing is configured to
monitor or sense;
automatically generating custom content pertinent to the
event in response to the notice indicating that the
trigger event as determined by the Thing has occurred;

automatically generating a wrap descriptor for a wrap
package, the wrap package including a plurality of
cards arranged to be browsed in one or more directions,
each card having:

(1) a fixed aspect ratio; and

(2) an immutable position of content within an immutable

card layout,

wherein at least one of the cards of the wrap package

includes the custom content pertinent to the event that
was automatically generated in response to the notice
indicating that the trigger event has occurred;

the wrap descriptor including a plurality of card descrip-

tors, each card descriptor arranged to define:

(3) a card component container defining the fixed aspect

ratio for the associated card; and

(4) one or more component descriptor(s) each defining a

component container arranged to contain or associate a
component with the associated card, each of the com-
ponent container(s) having a fixed position within the
associated card component container so that the immu-
table position of the component within the immutable
card layout is maintained;

ascertaining a target recipient for the wrap package; and

automatically delivering the wrap descriptor to a comput-

ing device associated with the target recipient, the wrap

10

15

20

35

40

45

50

60

92

descriptor arranged for the computing device to gen-
erate a runtime instance of the wrap package on a
display associated with the computing device from the
wrap descriptor, the runtime instance of the wrap
package including:

(a) the plurality of cards arranged to be browsed on the
display in the one or more directions; and

(b) the custom content pertinent to the event.

2. The method of claim 1, further comprising authoring
the plurality of cards of the wrap package by:

(c) defining the plurality of cards of the wrap package, the
plurality of cards derived from one or more card
templates including one or more empty component
container(s);

(d) defining one or more linear sequences for browsing
the cards in the one or more directions; and

(e) in response to the notice, inserting or associating the
generated custom content into the one or more empty
component container(s) of the defined one or more
cards.

3. The method of claim 2, wherein the one or more empty
component container(s) are each arranged to contain or
associate one of the following:

(c) text;

(d) an image/photo;

(e) a video;

() a widget;

(g) an appointment, reservation or booking function;

(h) GPS or positional functionality;

(1) an application;

(j) transactional functionality;

(k) a link;

(1) a document; and/or

(m) a feed for presenting data from a feed source.

4. The method of claim 1, wherein generating the wrap
descriptor for the wrap package further comprises:

(c) generating the plurality of card descriptors for the

plurality of cards of the wrap package respectively; and

(d) generating the wrap descriptor from the plurality of
card descriptors.

5. The method of claim 4, wherein generating the plurality
of card descriptors for the plurality of cards of the wrap
package further comprises:

(e) selecting a first card among the plurality of cards of the

wrap package;

() generating data object(s) for each component container
in the select card;

(g) generating the card descriptor for the select card from
the data object(s) generated for each component con-
tainer in the select card; and

(h) generating the plurality of card descriptors by repeat-
ing steps (e) through (g) for each card among the
plurality of cards of the wrap package respectively.

6. The method of claim 1, wherein the custom content

further includes one of the following:

(c) information pertinent to the Thing;

(d) information pertinent to the trigger event;

(e) information pertinent to the target recipient; or

() any combination of (c) through (e).

7. The method of claim 1, wherein the trigger event
comprises one or more of the following:

(c) a detected condition indicating that the Thing needs

maintenance or servicing;

(d) a warning indicating that the Thing is malfunctioning
or operating improperly;

(e) an emergency; and/or

() a condition sensed by the Thing.



US 9,460,228 B2

93

8. The method of claim 1, wherein the notice includes a
code that identifies the trigger event among a plurality of
possible trigger events.

9. The method of claim 1, wherein the notice includes one
of the following:

(c) a code identifying the event;

(d) an identification number for identifying the Thing;

(e) one or more designated persons or entities associated

with the Thing; or

(f) any combination of (c¢) through (e).

10. The method of claim 1, wherein the notice includes a
specific code that identifies the trigger event and the custom
content is related to the identified trigger event specified by
the code.

11. The method of claim 1, wherein the custom content
pertinent to the trigger event further comprises one or more
of the following:

(c) information identifying a make and/or model of the

Thing;

(d) information describing the trigger event;

(e) instructional text information informing how to correct

or address the trigger event;

(®) an instructional photo, image and/or video informing

how to correct or address the trigger event;

(g) functionality for contacting a repair or service orga-

nization;

(h) functionality for making a service or repair appoint-

ment;

(1) functionality for contacting emergency services;

(j) functionality for facilitating a transaction to purchase

a good or service related to the Thing; and/or

(1) functionality for conducting an online chat.

12. The method of claim 1, wherein generating the wrap
descriptor further comprises either:

(c) generating a JavaScript Object Notation (JSON) wrap

descriptor; or

(d) generating a Binary JSON (BSON) wrap descriptor.

13. The method of claim 1, wherein the cards of the wrap
package include a gallery card configured to display a
plurality of gallery items by:

(c) arranging the plurality of gallery items in a sequence;

and

(d) sequentially displaying the plurality of gallery items in

the sequence in response to navigational inputs.

14. The method of claim 1, wherein the wrap package
includes a widget card that presents, when rendered, a
widget that appears within a frame in the widget card, the
widget configured to interact with a remote widget server
while the widget card is rendered on the computing device
and to present, within the frame, one or more views to either
receive information and/or present information.

15. The method of claim 1, wherein at least one of the
cards of the wrap package is an application card having an
application embedded in or associated therewith, wherein
the application comprises one of the following:

(c) an online chat function;

(d) a reservation, appointment or booking function for

making a reservation, appointment or booking;

(e) an approval function configured for entry of an

approval;

() a data input/entry function for enabling data to be

input/entered through the application card;

(g) GPS or a positional functionality; and/or

(h) a transaction function for facilitating a transaction for

a good and/or service.

16. The method of claim 1, wherein the one or more

directions extend:

10

15

20

25

30

35

40

45

55

60

65

94

(c) horizontally;

(d) vertically;

(® both (c) and (d).

17. The method of claim 1, wherein at least one of the card
descriptors includes a feed descriptor that defines a feed for
the associated card, the feed descriptor defining a feed
source and feed content that is retrieved from the feed source
and rendered within a feed component container when the
associated card is rendered.

18. The method of claim 1, wherein at least one of the card
descriptors references an asset located external to the wrap
descriptor using an asset identifier, wherein the asset iden-
tifier is used to retrieve the asset so that it can be rendered
when the associated card is rendered.

19. The method of claim 1, wherein at least one of the card
descriptors includes a behavior declaration that declares a
behavior that is bound to the card when rendered by a
runtime viewer responsible for generating the runtime
instance of the wrap package at the computing device,
wherein the behavior is selected among a plurality of
behavior definitions maintained by the runtime viewer.

20. The method of claim 1, wherein the wrap package
includes at least one card having a trigger associated there-
with, the trigger invoking a predetermined call-to-action.

21. The method of claim 20, wherein the predefined
call-to-action, in response to the trigger, invokes one of the
following:

(c) a chat session;

(d) initiating a purchase transaction for a displayed item;

(e) an appointment, reservation or booking function;

() a GPS/location service;

(g) cul-de-sacing to a target web site;

(h) placement of an item into a shopping cart; or

(1) a “one-click” buy operation.

22. The method of claim 1, wherein the plurality of cards
of'the wrap package includes at least one transaction card for
implementing a transaction, the transaction card implement-
ing the transaction by one of the following:

(c) associating a transaction widget with the transaction

card;
(d) cul-de-sacing from the transaction card to a remote
server for performing the transaction and then returning
to the wrap package;
(e) associating a buy function with the transaction card; or
() associating one or more dependent cards with the
transaction card, the one or more dependent cards
facilitating the transaction.
23. The method of claim 1, further comprising:
authoring the wrap package of cards to have the pre-
defined presentation; and
configuring the wrap descriptor for the wrap package so
that the runtime instance of the wrap package has the
same presentation as authored,
wherein the presentation of the wrap package includes:
one or more non-gallery cards each having a first aspect
ratio and navigable along a first of the one or more
directions; and

a gallery card that is navigable along a second of the
one or more directions, the gallery card having a
second aspect ratio that is different than the first
aspect ratio of the one or more non-gallery cards,
wherein the first direction and the second direction
are perpendicular.

24. The method of claim 1, wherein:

each of the card descriptors includes at least one style or
attribute that is applied at a card level;



US 9,460,228 B2

95

at least some of the one or more component descriptor(s)
selectively define at least one style or attribute that is
applied at a component container level;

all of the styles and attributes included in the wrap
package are applied at one of a wrap level, the card
level, or the component container level.

25. The method of claim 1, wherein no markup language

tags are used in the wrap descriptor.

26. The method of claim 1, wherein no executable code or
scripts are used in the wrap descriptor.

27. The method of claim 1, wherein the runtime instance
of the wrap package is generated on the computing device
from the delivered wrap descriptor by either:

(c) creating an object graph from the wrap descriptor,
generating a document object model from the object
graph and generating the runtime instance of the cards
of the wrap package from the document object model;
or

(d) by a native application running on the consuming
device by generating the runtime instance of the wrap
package from the wrap descriptor.

28. The method of claim 1, wherein the component
container(s) defined by the one or more component descrip-
tor(s) are each selectively configured to include one of the
following:

10

15

20

96

(¢) a document;

(d) text;

(e) an image/photo

(1) a video;

(2) a link;

(h) location/GPS information;

(1) a widget;

(j) a data feed;

(k) an application function; and/or

(1) a transaction function.

29. The method of claim 1, wherein the fixed aspect ratio
of each card, the immutable position of the content within
the immutable layout of each of the cards, and the arrange-
ment of the plurality of cards to be browsed in the one or
more directions, results in the runtime instance of the wrap
package having a same presentation regardless of the type or
class of the computing device or the rendering environment
provided within the associated display.

30. The method of claim 1, wherein, the wrap descriptor
is a portable data-interchange object that is deliverable to the
computing device over a network.

#* #* #* #* #*



